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1. INEQUALITY CONSTRAINTS - KARUSH-KUHN-TUCKER (KKT) CONDITIONS2

This section extends the Lagrangean method to problems with inequality constraints. The main contrivbution
of the section is the development of the general Karush-Kuhn Tucker (KKT) necessary conditions for determin-
ing the stationary points. These conditions are also sufficient under certain rules that will be stated later.

Consider the problem
Maximize z = f (X)

subject to

  0g X 
The inequality constraints may be converted into equations by using non-negative slack variables. Let

 2
1 0S   be the slack quantity added to the ith constraint   0ig X   and define

   2 2 2 2
1 2 1 2, , ....., , , , .....,

TT
m mS S S S S S S S 

where m is the total number of inequality constraints. The Lagrangean function is thus given by :

      2, ,L X S f x g X S      
Given the constraints

  0g X 

a necessary condition for optimality is that   be non-negative (non-positive) for maximization (minimiza-
tion) problems. This result is justified by noting that the vector   measures the rate of variation of f with respect
to g – that is,

f
g


 


In the maximization case, as the right-hand side of the constraint   0g X   increases from 0 to the vector

,g  the solution space becomes less constrained and hence f cannot decrease, meaning that  0  . Similarly for
minimization, as the right-hand side of the constraints increases, f cannot increase, which implies that 0.   If

the constraints are equalities, that is,   0,g X   then   becomes unrestricted in sign.
The restrictions on   holds as part of the KKT necessary conditions. The remaining conditions will now be

developed.
Taking the partial derivatives of L with respect to X, S and ,  we obtain

    0L f X g X
X


   


2 0, 1, 2, ....,i i
i

L S i m
S


    


  2 0L g X S
   


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The second set of equations reveals the following results :
1. If 0,i   then 2 0,iS   which means that the corresponding resource is scarce, and, hence, it is consumed

completely (equality constraint).
2. If 2 0,iS   then 0.i   This means resource i is not scarce and, consequently, it has no affect on the

value of f (i.e., 0i
i

f
g


  
 )

From the second and third sets of equations, we obtain

  0, 1, 2, .....,i ig X i m  

This new condition essentially repeats the foregoing argument, because if 0,i 

   2 20 or 0; and if 0, 0,i i i ig X S g X S     and 0i  .
The KKT necessary conditions for maximization problem are summarized as :

   
 
 

0
0

0, 1, 2, ....,

0
i i

f X g X

g X i m

g X

 

  

  



These conditions apply to the minimization case as well, except that   must be non-positive (verify!). In
both maximization and minimization, the Lagrange multipliers corresponding to equality constraints are
unrestricted in sign.

Sufficiency of the KKT Conditions. The Kuhn-Tucker necessary conditions are also sufficient if the
objective function and the solution space satisfy specific conditions.

These conditions are summarized in Table-1.
It is simpler to verify that a function is convex or concave than to prove that a solution space is a

convex set. For this reason, we provide a list of conditions that are easier to apply in practice in the sense that the
convexity of the solution can be established by checking the convexity or concavity of the constraint functions.
To provide these conditions, we define the generalized non-linear problems as

Maximize or minimize z = f (X)
subject to

 
 
 

0, 1, 2, ....,

0, 1, ....,

0, 1, .....,

i

i

i

g X i r

g X i r p

g X i p m

 

  

  

         2 2
1 1

1 1 1
, ,

pr m

i i i i i i
i i r i n

L X S f X g X S g X S g X
    

                 

where i  is the Lagrangean multiplier associated with constraint i. The conditions for establishing the
sufficiency of the KKT conditions are summarized in Table-2.

The conditions in Table-2 represent only a subset of the conditions in Table-1 because a solution space may
be convex without satisfying the conditions in Table-2.

Sense of
optimization

Required conditions
Objective function Solution space

Maximization
Minimization

Concave
Convex

Convex set
Convex set

TABLE-1
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Sense of
optimization

Required conditions
f(X)

Maximization

Minimization

Concave

Convex

TABLE-2

gi(X)
Convex
Concave
Linear

i

0{
Convex
Concave
Linear

{
0

Unrestricted
0
0

Unrestricted

(1  i  r) 
(r+1  i  p) 
(p+1  i  m) 

(1  i  r) 
(r+1  i  p) 
(p+1  i  m) 

Table-2 is valid because the given conditions yield a concave Lagrangean function  , ,L X S   in case

of maximization and a convex  , ,L X S   in case of minimization. This result is verified by noticing that if

 ig x  is convex, then  i ig x  is convex if 0i   and concave if 0.i   Similar interepretations can be
established for all the remaining conditions. Observe that a linear function is both convex and concave. Also, if

a function f is concave, then  f  is convex, and vice-versa.
Example-1
Consider the following minimization problem :

  2 2 2
1 2 3Minimize f X x x x  

subject to

 1 1 22 5 0g X x x   

 2 1 3 2 0g X x x   

 3 11 0g X x  

 4 22 0g X x  

 5 2 0g X x  

This is a minimization problem, hence 0  . The KKT conditions are thus given as

 1 2 3 4 5, , , , 0     

   1 2 3 1 2 3 4 5

2 1 0
1 0 1

2 , 2 , 2 , , , , 01 0 0
0 1 0
0 0 1

x x x

 
 
 
       
 

 
  

1 1 2 2 5 5.... 0g g g      

  0g X 
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These conditions reduce to

1 2 3 4 5, , , , 0     

1 1 2 32 2 0x      

1 1 42 0x    

3 2 52 0x    

 1 1 22 5 0x x   

 2 1 3 2 0x x   

 3 11 0x  

 4 22 0x  

5 3 0x 

1 22 5x x 

1 3 2x x 

1 2 31, 2, 0x x x  

The solution is 1 2 3 1 2 51, 2, 0, 0,x x x          3 42, 4.       Because both  f X  and the

solution space   0g X   are convex,  , ,L X S   must be convex and the resulting stationary point yields a
global constrained minimum.


