e-content (lecture-12)
by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-4 (Functional Analysis)
Topic:Frechet-Riesz representation theorem.
Theorem(Frechet-Riesz representation theorem for bounded linear functional in H)

Let f be a bounded (i.e continuous)linear functional on a Hilbert space H. Then there exists a unique vector $y \in H$
such that $f(x)=(x, y) \quad \forall x \in H$.
Proof: If f is zero functional then $f(x)=0 \quad \forall x \in \mathrm{H}$
So we choose $y=0$ then $(x, y)=0$ and hence $f(x)=(x, y) \quad \forall x \in H$.

If f is not zero functional then its Kernel
$\mathrm{M}=\{x \in \mathrm{H}: f(x)=0\}$ is a proper closed linear subspace of the Hilbert space H.

So there exists a non-zero vector $y_{0} \in \mathrm{H}$ such that y_{0} is orthogonal to M .

Putting $=\frac{y_{0}}{\left\|y_{0}\right\|}$. Then z is orthogonal to M and $\|z\|=1$. Now for all $x \in \mathrm{H}, f(x) z-f(z) x$ belongs M to M

Since $f(f(x) z-f(z) x)=f(x) f(z)-f(z) f(x)=0$ and z is orthogonal to M hence

$$
\begin{aligned}
& \quad(f(x) z-f(z) x, z)=0 \\
\Rightarrow & f(x) \cdot(z, z)-f(z)(x, z)=0 \\
\Rightarrow & f(x) \cdot(z, z)=f(z)(x, z) \\
\Rightarrow & f(x) \cdot\|x\|^{2}=(x, \overline{f(z)} z) \\
\Rightarrow & f(x)=(x, \overline{f(z)} z)
\end{aligned}
$$

Taking $\quad y=\overline{f(z)} z \quad$ we get

$$
f(x)=(x, y) \quad \forall x \in H
$$

Uniqueness: Let y^{\prime} be another vector in H such that

$$
f(x)=\left(x, y^{\prime}\right) \quad \forall x \in H
$$

Then

$$
(x, y)=\left(x, y^{\prime}\right) \forall x \in \mathrm{H}
$$

$$
\begin{aligned}
& \text { Hence }(x, y)-\left(x, y^{\prime}\right)=0 \forall x \in \mathrm{H} \text {. } \\
& \Rightarrow\left(x, y-y^{\prime}\right)=0 \forall x \in \mathrm{H} \text {. } \\
& \Rightarrow \quad\left(y-y^{\prime}, y-y^{\prime}\right)=0 \quad \text { Taking } x=y-y^{\prime} \\
& \Rightarrow \quad y-y^{\prime}=0 \\
& \Rightarrow y=y^{\prime} \text { Hence } y \text { is a unique vector } \mathrm{H} \text {. }
\end{aligned}
$$

END.

