e-content (lecture-12)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-4 (Functional Analysis)

Topic:Frechet-Riesz representation theorem.

Theorem(Frechet-Riesz representation theorem for bounded linear functional in H)

Let f be a bounded (i.e continuous)linear functional on a Hilbert space H.Then there exists a unique vector $y \in H$

such that $f(x) = (x, y) \quad \forall x \in H$.

Proof: If *f* is zero functional then $f(x) = 0 \quad \forall x \in H$

So we choose y = 0 then (x, y) = 0 and

hence $f(x) = (x, y) \quad \forall x \in H$.

If f is not zero functional then its Kernel

 $M=\{x \in H: f(x) = 0\}$ is a proper closed linear subspace of the Hilbert space H.

So there exists a non-zero vector $y_0 \in H$ such that y_0 is

orthogonal to M.

Putting $= \frac{y_0}{\|y_0\|}$. Then z is orthogonal to M and $\|z\| = 1$. Now for all $x \in H$, f(x)z - f(z)x belongs M to M

Since f(f(x)z - f(z)x) = f(x)f(z) - f(z)f(x) = 0

and z is orthogonal to M hence

$$(f(x)z - f(z)x, z) = 0$$

$$\Rightarrow f(x).(z, z) - f(z)(x, z) = 0$$

$$\Rightarrow f(x).(z, z) = f(z)(x, z)$$

$$\Rightarrow f(x). ||x||^{2} = (x, \overline{f(z)}z)$$

$$\Rightarrow f(x) = (x, \overline{f(z)}z)$$

Taking y=f(z)z we get $f(x) = (x, y) \quad \forall x \in H.$

Uniqueness: Let y' be another vector in H such that

$$f(x) = (x, y') \quad \forall x \in \mathsf{H}.$$

Then $(x, y) = (x, y') \forall x \in H.$

Hence
$$(x, y) - (x, y') = 0 \forall x \in H$$
.
 $\Rightarrow (x, y - y') = 0 \forall x \in H$.
 $\Rightarrow (y - y', y - y') = 0$ Taking $x = y - y'$
 $\Rightarrow y - y' = 0$
 $\Rightarrow y = y'$ Hence y is a unique vector H.

END.