Rotational and irrotional fluid flow (6)

Binod Kumar*
M.Sc. Mathematics Semester: III
Paper: Fluid Dynamics XII (MAT CC-12)
Patna University ,Patna

September 28, 2020

1 The velocity potential or velocity function

Suppose that the fluid velocity at time t is $\boldsymbol{q}=(u, v, w)$. Further consider that at the instant t, there exist a scalar function $\phi(x, y, z, t)$ uniform throughout the entire field of flow and such that

$$
-d \phi=q \cdot d r=u d x+v d y+w d z
$$

i.e.,

$$
-\left(\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z\right)=u d x+v d y+w d z
$$

\Longrightarrow

$$
u=-\frac{\partial \phi}{\partial x}, \quad v-\frac{\partial \phi}{\partial y}, \quad w=-\frac{\partial \phi}{\partial z}
$$

\therefore

$$
\begin{equation*}
\boldsymbol{q}=-\nabla \phi=\operatorname{grad} \phi \tag{1}
\end{equation*}
$$

ϕ is called the velocity potential. The negative sign in (1) is a convention. It ensure that the flow take place from the higher to lower potential.

The necessary and sufficient condition for (1) to hold is

$$
\boldsymbol{q} \times d r=0 \quad \text { i.e., } \quad \operatorname{curl} \boldsymbol{q}=0
$$

[^0]or,
\[

$$
\begin{equation*}
i\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+j\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right)+k\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=0 \tag{2}
\end{equation*}
$$

\]

Remark 1. The surface

$$
\begin{equation*}
\phi(x, y, z, t)=\text { constant } \tag{3}
\end{equation*}
$$

are called equipotentials. The streamlines motion

$$
\begin{equation*}
\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w} \tag{4}
\end{equation*}
$$

are cut at right angles by the surface given by the differential equation

$$
\begin{equation*}
u d x+v d y+w d z \tag{5}
\end{equation*}
$$

and the condition for the existence of such orthogonal surface is the condition that (5) may posses a solution of the form (4) at the considered instant t, the analytical condition being

$$
\begin{equation*}
u\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+v\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right)+w\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=0 \tag{6}
\end{equation*}
$$

when the velocity potential exists,(1) holds. Then

$$
\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}=\frac{\partial^{2} \phi}{\partial y \partial z}-\frac{\partial^{2} \phi}{\partial z \partial y}=0 \quad \Longrightarrow \quad \frac{\partial w}{\partial y}=\frac{\partial v}{\partial z}
$$

Similarly

$$
\frac{\partial u}{\partial z}=\frac{\partial w}{\partial x} \quad \text { and } \quad \frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}
$$

Remark 2. When equation (1) holds, then flow is known as potential kind. It also known as motion is irrational. For such flow the field of \boldsymbol{q} is conservative.

Remark 3. The equation of continuity of an incompressible fluid

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{7}
\end{equation*}
$$

Suppose that the fluid move irrationally. Then the velocity potential ϕ exists such that

$$
\begin{equation*}
u=-\frac{\partial \phi}{\partial x}, \quad v-\frac{\partial \phi}{\partial y}, \quad w=-\frac{\partial \phi}{\partial z} \tag{8}
\end{equation*}
$$

Using equations (7) and (8) reduces to

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial^{2} x}+\frac{\partial^{2} \phi}{\partial^{2} y}+\frac{\partial^{2} \phi}{\partial^{2} z}=\nabla^{2} \phi=0 \tag{9}
\end{equation*}
$$

showing that ϕ is a harmonic function satisfying the Laplace equation $\nabla^{2} \phi=0$, where

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial^{2} x}+\frac{\partial^{2}}{\partial^{2} y}+\frac{\partial^{2}}{\partial^{2} z} \tag{10}
\end{equation*}
$$

1.1 The vorticity vector.

Let $\boldsymbol{q}=u i+v j+w k$ be the fluid velocity such that

$$
\boldsymbol{q} \times d r \neq 0 \quad \text { i.e., } \quad \operatorname{curl} \boldsymbol{q} \neq 0
$$

Then the vector

$$
\begin{equation*}
\Lambda=\boldsymbol{q} \times d r=\operatorname{curl} \boldsymbol{q} \tag{11}
\end{equation*}
$$

is called vorticity vector.
Let Λ_{x}, Λ_{y} and Λ_{z} be the components of Λ in Cartesian coordinate. Then (11) reduces to

$$
\begin{equation*}
\Lambda_{x} i+\Lambda_{y} j=\Lambda_{z} k=i\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+j\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right)+k\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \tag{12}
\end{equation*}
$$

so that

$$
\Lambda_{x}=\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}, \quad \Lambda_{y}=\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}, \quad \Lambda_{z}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}
$$

1.1.1 Vortex line.

A vortex line is a curve drawn in the fluid such that the tangent to it every point is in the direction of the vorticity vector Λ.

Let $\Lambda=\Lambda_{x} i+\Lambda_{y} j+\Lambda_{z} k$ and let $r=x i+y j+z k$ be the position vector of a point P on the vortex line. The Λ is parallel to $d r$ at point P on the vortex line. Hence the equation of vortex lines is given by

$$
\begin{equation*}
\Lambda \times d r=0 \tag{13}
\end{equation*}
$$

i.e.,

$$
\left(\Lambda_{x} i+\Lambda_{y} j+\Lambda_{z} k\right) \times(d x i+d y j+d z k)=0
$$

or,

$$
\left(\Lambda_{y} d z-\Lambda_{z} d y\right) i+\left(\Lambda_{z} d x-\Lambda_{x} d z\right) j+\left(\Lambda_{x} d y-\Lambda_{y} d x\right) k
$$

\Longrightarrow

$$
\Lambda_{y} d z-\Lambda_{z} d y=0 \quad \Lambda_{z} d x-\Lambda_{x} d z=0 \quad \text { text } \quad \Lambda_{x} d y-\Lambda_{y} d x
$$

So that

$$
\begin{equation*}
\frac{d x}{\Lambda_{x}}=\frac{d y}{\Lambda_{y}}=\frac{d z}{\Lambda_{z}} \tag{14}
\end{equation*}
$$

All the best...
Next in $7^{\text {th }}$ Econtent

[^0]: *Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

