Lamb's hydrodynamical equation (8)

Binod Kumar*
M.Sc. Mathematics Semester: III
Paper: Fluid Dynamics XII (MAT CC-12)
Patna University ,Patna

September 28, 2020

1 Deduction of Lamb's hydrodynamical equations

Equation of continuity for fluid flow

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+\boldsymbol{q} \cdot \nabla \tag{1}
\end{equation*}
$$

Euler's equation of continuity be

$$
\begin{equation*}
\frac{D \boldsymbol{q}}{D t}=\boldsymbol{F}-\frac{1}{\rho} \nabla p \tag{2}
\end{equation*}
$$

where \boldsymbol{F} be external force. Let ρ and p be density of fluid and pressure respectively.
Then equation (2) can be written as

$$
\begin{equation*}
\frac{D \boldsymbol{q}}{D t}=\frac{\partial \boldsymbol{q}}{\partial t}+(\boldsymbol{q} \cdot \nabla) \boldsymbol{q}=\boldsymbol{F}-\frac{1}{\rho} \nabla p \tag{3}
\end{equation*}
$$

But

$$
\nabla(\boldsymbol{q} \cdot \boldsymbol{q})=2[\boldsymbol{q} \times \operatorname{curl} \boldsymbol{q}]
$$

so that

$$
(\boldsymbol{q} \cdot \nabla) \boldsymbol{q}=\frac{1}{2} \nabla(\boldsymbol{q} \cdot \boldsymbol{q})-\boldsymbol{q} \times \operatorname{curl} \boldsymbol{q}
$$

or,

$$
\begin{equation*}
(\boldsymbol{q} \cdot \nabla) \boldsymbol{q}=\nabla\left(\frac{\boldsymbol{q}^{2}}{2}\right)+\operatorname{curl} \boldsymbol{q} \times \boldsymbol{q} \tag{4}
\end{equation*}
$$

Then equation (3) can be written with the help of equation (4)

$$
\begin{equation*}
\frac{\partial \boldsymbol{q}}{\partial t}+\nabla\left(\frac{\boldsymbol{q}^{2}}{2}\right)+\operatorname{curl} \boldsymbol{q} \times \boldsymbol{q}=\boldsymbol{F}-\frac{1}{\rho} \nabla p \tag{5}
\end{equation*}
$$

[^0]If the motion of fluid be rotational, then vorticity vector $\boldsymbol{\Lambda}$ is given by

$$
\begin{equation*}
\boldsymbol{\Lambda}=\operatorname{curl} \boldsymbol{q} \tag{6}
\end{equation*}
$$

Then equation (5) becomes

$$
\begin{equation*}
\frac{\partial \boldsymbol{q}}{\partial t}+\nabla\left(\frac{\boldsymbol{q}^{2}}{2}\right)+\boldsymbol{\Lambda} \times \boldsymbol{q}=-\nabla V-\frac{1}{\rho} \nabla p \tag{7}
\end{equation*}
$$

If \boldsymbol{F} be conservative force, then there exists force potential V such that $\boldsymbol{F}=-\nabla V$.
Equation (7) is known as Lamb's hydrodynamical equation.
Example 1. A mass of gravitating fluid is at rest under its own attraction only, the free surface being a sphere of radius b and the inner surface a rigid concentric shell of radius a. Show that if the shell suddenly disappears, the initial pressure at any point of the fluid at distance r from the center is,

$$
\frac{2}{3} \pi \gamma \rho^{2}(b-a)(r-a)\left(\frac{a+b}{r}+1\right)
$$

Solution 1. Let t, v^{\prime} be the velocity at a distance r^{\prime} from the center and let the radius of the inner spherical cavity be r. Let p be the pressure at a distance r^{\prime}. Then the equation of continuity is

$$
\begin{align*}
r^{\prime 2} v^{\prime} & =F(t) \tag{8}\\
\text { from (8), } \quad \frac{d v^{\prime}}{d t} & =\frac{F^{\prime}(t)}{r^{\prime 2}} \tag{9}\\
\text { Attraction at distance } r^{\prime} & =\frac{(4 / 3) \times \pi \gamma \rho\left(r^{\prime 3}-r^{3}\right)}{r^{\prime 2}}
\end{align*}
$$

where γ is the usual constant of gravitation.
Hence the equation of motion is

$$
\begin{aligned}
\frac{\partial v^{\prime}}{\partial t}+v^{\prime} \frac{\partial v^{\prime}}{\partial r^{\prime}} & =-\frac{4}{3} \pi \gamma \rho\left(r^{\prime}-\frac{r^{3}}{r^{\prime 2}}\right)-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}} \\
\text { i.e, } \frac{F^{\prime}(t)}{r^{\prime 2}}+\frac{\partial}{\partial r^{\prime}}\left(\frac{1}{2} v^{\prime} 2\right) & =-\frac{4}{3} \pi \gamma \rho\left(r^{\prime}-\frac{r^{3}}{r^{\prime 2}}\right)-\frac{1}{\rho} \frac{\partial p}{\partial r^{\prime}}
\end{aligned}
$$

integrating with respect to r^{\prime}, we obtain

$$
\begin{equation*}
-\frac{F^{\prime}(t)}{r^{\prime}}+\frac{1}{2} v^{2}=-\frac{4}{3} \pi \gamma \rho\left(\frac{r^{\prime 2}}{2}+\frac{r^{3}}{r^{\prime}}\right)-\frac{p}{\rho}+C \quad C \text { being and arbitrary constant } \tag{10}
\end{equation*}
$$

Initially, when $t=0$, then $v^{\prime}=0$, and $p=P$ (say). Hence (10) yields

$$
\begin{equation*}
-\frac{F^{\prime}(0)}{a}=-\frac{4}{3} \pi \gamma \rho\left(\frac{r^{\prime 2}}{2}+\frac{a^{3}}{r^{\prime}}\right)-\frac{P}{\rho}+C \tag{11}
\end{equation*}
$$

But, $P=0$ when $r^{\prime}=a$ and $r^{\prime}=b$ so equation (11) gives

$$
\begin{align*}
-\frac{F^{\prime}(0)}{a} & =-\frac{4}{3} \pi \gamma \rho\left(\frac{a^{2}}{2}+a^{2}\right)+C \tag{12}\\
\text { and }-\frac{F^{\prime}(0)}{a} & =-\frac{4}{3} \pi \gamma \rho\left(\frac{b^{2}}{2}+\frac{a^{3}}{b}\right)+C \tag{13}
\end{align*}
$$

subtracting (13) from (12), we have

$$
\begin{align*}
F^{\prime}(0)\left(\frac{1}{b}-\frac{1}{a}\right) & =\frac{4}{3} \pi \gamma \rho\left\{\frac{\left(b^{2}-a^{2}\right.}{2}+a^{2}\left(\frac{a}{b}-1\right)\right\} \\
F^{\prime}(0) \frac{a-b}{a b} & =\frac{4}{3} \pi \gamma \rho\left\{\frac{(b-a)(b+a)}{2}+\frac{a^{2}(a-b)}{b}\right\} \\
\text { or } \quad F^{\prime}(0) & =-(2 / 3) \times \pi \gamma a b\left(a+b(4 / 3) \times \pi \gamma \rho a^{3}\right. \tag{14}
\end{align*}
$$

Multiplying (12) by a and (13) by b then subtracting, we get

$$
\begin{align*}
0 & =\frac{4}{3} \pi \gamma \rho\left(\frac{b^{3}}{2}-\frac{a^{3}}{2}\right)+C(a-b) \\
\text { or } \quad C(b-a) & =(2 / 3) \times \pi \gamma \rho(b-a)\left(b^{2}+a^{2}+b a\right) \\
C(a-b) & =(2 / 3) \times \gamma \rho(b-a)\left(a^{2}+b^{2}+a b\right) \tag{15}
\end{align*}
$$

putting the values of $F^{\prime}(0)$ and C in (11), we get

$$
\begin{align*}
-\frac{1}{r^{\prime}}\left\{-\frac{2}{3} \pi \gamma \rho(a+b)+\frac{4}{3} \pi \gamma \rho a^{3}\right\} & =-\frac{4}{3} \pi \gamma \rho\left(\frac{r^{\prime 2}}{2}+\frac{a^{3}}{r^{\prime}}\right)-\frac{P}{\rho}+\frac{2}{3} \pi \gamma \rho\left(a^{2}+b^{2}+a b\right) \\
\therefore \quad P & =\frac{2}{3} \pi \gamma \rho^{2}\left\{a^{2}+b^{2}+a b-\frac{a b(a+b)}{r^{\prime}}-r^{\prime 2}\right\} \\
\text { or } & P \tag{16}
\end{align*}
$$

For the required result, replace r^{\prime} by r in (16)
All the best...
Next in $9^{\text {th }}$ Econtent

[^0]: *Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

