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1 The energy equation

Statement 1. The rate of change of total energy (kinetic, potential and intrinsic) of any
portion of a compressible inviscid fluid as it moves about is equal to the rate at which work
is being done by the pressure on the boundary. The potential due to the extraneous forces
is supposed to be independent of time.

Proof. Consider any arbitrary closed surface S drawn in the region occupied by the in-
viscid fluid and let V be the volume of the fluid within S. Let ρ be the density of the
fluid particle P within S and dV be the volume element surrounding P . Let q(r, t) be the
velocity of P . Then, the Euler’s equation of motion is

dq/dt = −(1/ρ)∇p+ F (1)

Let the external forces be conservative so that there exists a force potential Ω which is
independent of time. Thus F = −∇Ω and ∂Ω/∂t = 0.
Using the above results and then multiplying both side of (1) scalarly by q, we get

ρ

(
q.
dq

dt

)
= −q.∇p− ρ [q.∇Ω] or ρ

[
d

dt

(
1

2
q2

)
+ (q.∇)

]
= −q.∇p (2)

But dΩ
dt

= ∂Ω
∂t

+ (q.∇)Ω, since ∂Ω
∂t

= 0
Hence, equation (2) becomes

ρ
d

dt

(
1

2
q2 + Ω

)
= −q.∇p (3)

since the elementary mass remains invariant thought the motion, so

d(ρV )/dt = 0 (4)
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Integrating both sides of (3) over V, we have∫
V

d

dt

(
1

2
q2

)
ρdV +

∫
v

d

dt
(ρΩ)dV = −

∫
V

(q.∇p)dV = −
∫
V

(q.∇p)dV

or

∫
V

{
d

dt

(
1

2
q2

)
ρdV +

1

2
q2 d

dt
(ρdV )

}
+

∫
V

d

dt
(ρΩdV ) = −

∫
V

(q.dV )

Thus,
d

dt

∫
V

(
1

2
ρq2

)
dV +

d

dt

∫
V

(ρΩ)dv = −
∫
V

(q.∇p)dV (5)

Let T,W and I denotes the kinetic, potential and intrinsic (internal) energies respectively.
Then by definitions

T =

∫
V

1

2
ρq2dV, W =

∫
V

ρΩdV, I =

∫
V

ρEdV, (6)

where E is the intrinsic energy per unit mass,

since ∇.(pq) = p∇.q + q.∇p, we have q.∇p = ∇.(pq)− p∇.q

∴ R.H.Sof(4) = −
∫
V

∇.(pq)dV +

∫
V

p∇.qdV =

∫
s

pq.nds+

∫
s

p∇.qdV, (5)

when n is unit inward normal and ds is the element of the fluid surface S. We now prove
that ∫

V

p∇.qdV = −dI
dt

(5)

Now, E is defined as the work done by the unit mass of the fluid against external pressure
P (assuming that there exists a relation between pressure and density) from its actual
state to some standard state in which P0 and ρ0 are the values of pressure and density
respectively.

∴ E =

∫ V0

V

PdV, whereV ρ = 1 i.e., V = 1/ρ

or E =

∫ ρ0

ρ

pd

(
1

ρ

)
= −

∫ ρ0

ρ

p

ρ2
dρ =

∫ ρ0

ρ

p

ρ2
dp (4)

from (1),
dE

dρ
=

p

ρ2
and so

dE

dt
=
dE

dρ

dρ

dt
=

p

ρ2

dρ

dt

Multiplying both sides by ρdV and then integrating over a volume V , we have∫
V

dE

dt
ρdV =

∫
V

p

ρ

dρ

dt
dV (3)

But
d

dt
(EρdV ) =

dE

dt
ρdV + E

d

dt
(ρdV )
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∴
d

dt
(EρdV ) =

dE

dt
ρdV, using (4) (2)

Also from the equation of continuity,
dρ

dt
= −ρ∇.q (2)

Using (1) and (1),(1) red uses to

d

dt

∫
V

EρdV = −
∫
V

p∇.qdV, by(6)

which proves (1).
Again the rate of work done by the fluid pressure on an element δS of S is pδSn.q

Hence the net rate at which work is being done by the fluid pressure is∫
S

pq.nds = R, (say) (2)

Using (1)and (1), (1) reduces to

R.H.S of (4) = R− dI/dt (2)

Here using (6) and (1),(4) reduces to

d

dt
(T +W + I) = R (2)

which is the desired energy equation. It is also known as ”the Volume integral from of
Bernoulli’s equation”.
Re-writing the equation(1),

d

dt
(T +W ) = R− dI

dt

∫
s

pq.nds+

∫
V

p∇.qdV (2)

corollary 1. Energy equation for incompressible fluids.
since I = 0 for incompressible fluids, (1) reduce to

d

dt
(T +W ) = R (2)

2 Example

Example 1. An infinite mass of fluid is acted on by a forceµ/r
3
2 per unit mass directed

to the origin. If initially the fluid is at rest and there is cavity in the form of the sphere
r = c in it, show that the cavity will be filled up after an interval of time (2/5µ)

1
2 c

5
4
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Solution 1. At any time t, let v′ be the velocity at distance r′ from the center. Again, let
r be the radius of the cavity and v its velocity.Then the equation of continuity yields

r′2v′ = r2v (3)

when the radius of the cavity is r, then

Kinetic energy =

∫ ∞

r

1

2
(4πr′2ρdr′).v2

= 2πρr4v2

∫ ∞

r

dr′

r′2
, using 3)

= 2πρr3v2

The initial kinetic energy is zero.
Let V be the work function (or force potential) due to external forces. Then, we have

− ∂V

∂r′
=

µ

r′3/2
so that V =

2µ

r′1/2

∴ the work done =

∫ c

r

V dm, dm being the elementary mass

=

∫ c

r

(
2µ

r′(1/2)

)
4πr′2dr′ρ

= 8πµρ

∫ c

r

r′3/1dr′

=
16

5
πρµ(c5/2 − r5/2)

We now use of energy equation, namely, Increase in kinetic energy=work done

⇒ 2πρr3v2 − 0 = (16/5)× πρµ(c5/2 − r5/2)

∴ v =
dr

dt
= −

(
8µ

5

)1/2
(c5/2 − r5/2)1/2

r3/2
(4)

wherein negative sign is taken because r decreases as t increases
Let T be the time of filling up the cavity. Then (4) gives∫ T

0

dt = −
(

5

8µ

)1/2 ∫ c

0

r3/2dr√
(c5/2 − r5/2)

T = −
(

5

8µ

)1/2 ∫ c

0

r3/2dr√
(c5/2 − r5/2)

putr5/2 = c5/2 sin2 θ

so that(5/2)× r3/2dr = 2c5/2 sin θ cos θdθ.

∴ T = −
(

5

8µ

)∫ π/2

0

4

5
c5/4 sin θdθ =

(
2

5µ

)1/2

c5/4.
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Second Method. Here the motion of the fluid will take place in such a manner so
that each element of the fluid moves towards the center. Hence the free surface would be
spherical. Thus the fluid velocity v′ will be function of r′ (the radial distance from the
centre of the sphere which is taken as origin) and time t. Also, let v be the velocity at a
distance r.

Then the equation of continuity is

r′2v′ = F (t) = r2v (5)

from (5)
∂v′

∂t
=
F ′(t)

r′2
. (6)

The equation of motion is

∂v′

∂t
+ v′

∂v′

∂r′
= − µ

r′3/2
− 1

ρ

∂p

∂r′
;

or
F ′(t)

r′2
+

1

2
v′2 = − µ

r′3/2
− 1

ρ

∂p

∂r′
; (7)

Integrating (7) with respect to r′, we have

−F
′(t)

r′
+

1

2
v′2 =

2µ

r1/2
− p

ρ
+ C (8)

when r′ =∞, v′ = 0, p = 0.

so from (8), C = 0. Then (8) becomes

−F
′(t)

r′
+

1

2
v′2 =

2µ

r′1/2
− p

ρ
(9)

when r′ = r, v′ = v, p = 0.

so from (9), reduced to −F
′(t)

r′
+

1

2
v′2 =

2µ

r1/2
(10)

(11)

Now, (5)⇒ F (t)r2v ⇒ F ′(t) = 2rv(dr/dt) + r2(dv/dt)

or F ′(t) =

All the best...
Next in 11th Econtent
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