E-content -By Dr Abhik Singh, Guest faculty, PG Department of Mathematics, Patna University, Patna

Content-Hurwitz Theorem

Theorem:
${ }^{\text {Let }} \alpha=\frac{\sqrt{5}-1}{2}$ and $\beta>\sqrt{5}$. Then the inequality $\left|\alpha-\frac{x}{y}\right|<\frac{1}{\beta y^{2}}$
.................. (1) has a finite number of solutions.

Proof : Let a fraction $\frac{a}{b}$ satisfy (1) so that we have
$\left|\frac{\sqrt{ } 5-1}{2}-\frac{a}{b}\right|<\frac{1}{\beta b^{2}}$
To prove the theorem we have to show that b can have only a finite number of different values. So the inequality (2) implies

$$
\frac{1}{\beta b^{2}}\left(\frac{1}{\beta b^{2}}+\sqrt{5}\right)>\left|\frac{a}{b}-\frac{\sqrt{5-1}}{2}\right|\left(\left|\frac{a}{b}-\frac{\sqrt{5}-1}{2}\right|+|\sqrt{5}|\right)
$$

$$
\begin{aligned}
& \geq\left|\frac{a}{b}-\frac{\sqrt{5}-1}{2}\right|\left|\frac{a}{b}-\frac{\sqrt{5}-1}{2}+\sqrt{5}\right| \\
& =\left|\frac{a}{b}-\frac{\sqrt{5}-1}{2}\right|\left|\frac{a}{b}+\frac{\sqrt{5}+1}{2}\right| \\
& =\left|\mathrm{a}^{2}+\mathrm{ab}-\mathrm{b}^{2}\right| / \mathrm{b}^{2}
\end{aligned}
$$

Here $a^{2}+a b-b^{2}$ is the product of irrational numbers. Hence it is not equal to zero .It follows that
$\frac{1}{\beta b^{2}}\left(\frac{1}{\beta b^{2}}+\sqrt{5}\right)>\frac{1}{b^{2}}$ or
$\frac{1}{\beta b^{2}}+\sqrt{5}>\beta$.
Let $\beta=\sqrt{5}+\delta$ where δ is some positive real number. Then we have $\frac{1}{(\sqrt{5}+\delta) b^{2}}+\sqrt{5}>\sqrt{5}+\delta$.
This implies $\mathrm{b}^{2}<\frac{1}{\delta(\sqrt{5}+\delta)}=$ a finite number.
Thus we prove that b can have only a finite number of different values.

Second proof

Let the given inequality be satisfied by $\frac{a}{b}$ so that we have

$$
\begin{equation*}
\left|\frac{\sqrt{ } 5-1}{2}-\frac{a}{b}\right|<\frac{1}{\beta b^{2}} \tag{4}
\end{equation*}
$$

To prove the theorem we have to show that b can have only a finite number of different values .Now, since $\beta>\sqrt{5}$ we can write (4) in the form $\frac{\sqrt{5}-1}{2}-\frac{a}{b}=\frac{\theta}{\sqrt{5 b}} 2$, when $|\theta|<1$
$\frac{\sqrt{ } 5 b}{2}-\frac{b}{2}-\mathrm{a}=\frac{\theta}{\sqrt{5 b}}$
$\frac{\sqrt{5} b}{2}-\frac{\theta}{\sqrt{5} b}=a+\frac{b}{2}$
Squaring both sides we obtain
$5 b^{2} / 4+\theta^{2} / 5 b^{2}-\theta=a^{2}+a b+b^{2} / 4$
Which reduces to
$a^{2}+a b-b^{2}=-\theta+\theta^{2} / 5 b^{2}$
Now $a^{2}+a b-b^{2} \leq\left|a^{2}+a b-b^{2}\right|=\left|-\theta+\theta^{2} / 5 b^{2}\right|$
Therefore $\left|a^{2}+a b-b^{2}\right| \leq|\theta|+\theta^{2} / 5 b^{2} \mid$
Let us assume that b has infinite number of different values which satisfy (4).It follows that for sufficiently large value of $b,|\theta|+$ $\theta^{2} / 5 \mathrm{~b}^{2}$ becomes a positive real number ≤ 1. Therefore for those values of b
$a^{2}+a b-b^{2}=0$
because $a^{2}+a b-b^{2}$ is necessarily an integer. Equation (6) implies $4 a^{2}+4 a b+b^{2}=5 b^{2}$

That is $2 a+b=\sqrt{ } 5 b$ which is impossible, $\sqrt{5} b$ is being irrational .Thus our assumption is proved. This complete the proof of the theorem.

