M.Sc Mathematics –SEM 2 Number Theory CC-10 Unit 4

E-content –By Dr Abhik Singh, Guest faculty, PG Department of Mathematics, Patna University, Patna

Content-Hurwitz Theorem

Theorem:

Let
$$\alpha = \frac{\sqrt{5}-1}{2}$$
 and $\beta > \sqrt{5}$. Then the inequality $|\alpha - \frac{x}{y}| < \frac{1}{\beta y^2}$

..... (1) has a finite number of solutions.

Proof : Let a fraction $\frac{a}{b}$ satisfy (1) so that we have $\left|\frac{\sqrt{5-1}}{2} - \frac{a}{b}\right| < \frac{1}{\beta b^2} \qquad (2)$

To prove the theorem we have to show that b can have only a finite number of different values. So the inequality (2) implies

$$\frac{1}{\beta b^2} \left(\frac{1}{\beta b^2} + \sqrt{5}\right) > \left|\frac{a}{b} - \frac{\sqrt{5-1}}{2}\right| \left(\left|\frac{a}{b} - \frac{\sqrt{5-1}}{2}\right| + \left|\sqrt{5}\right|\right)$$

$$\geq \left|\frac{a}{b} - \frac{\sqrt{5}-1}{2}\right| \left|\frac{a}{b} - \frac{\sqrt{5}-1}{2} + \sqrt{5}\right|$$
$$= \left|\frac{a}{b} - \frac{\sqrt{5}-1}{2}\right| \left|\frac{a}{b} + \frac{\sqrt{5}+1}{2}\right|$$
$$= \left|a^{2} + ab - b^{2}\right| / b^{2}$$

Here a^2+ab-b^2 is the product of irrational numbers. Hence it is not equal to zero .It follows that

This implies $b^2 < \frac{1}{\delta(\sqrt{5+\delta})} = a$ finite number.

Thus we prove that b can have only a finite number of different values.

Second proof

Let the given inequality be satisfied by $\frac{a}{b}$ so that we have

$$\left|\frac{\sqrt{5-1}}{2} - \frac{a}{b}\right| < \frac{1}{\beta b^2}$$
(4)

To prove the theorem we have to show that b can have only a finite number of different values .Now , since $\beta > \sqrt{5}$ we can write (4) in the

form
$$\frac{\sqrt{5-1}}{2} - \frac{a}{b} = \frac{\theta}{\sqrt{5b}^2}$$
, when $|\theta| < 1$
 $\frac{\sqrt{5b}}{2} - \frac{b}{2} - a = \frac{\theta}{\sqrt{5b}}$
 $\frac{\sqrt{5b}}{2} - \frac{\theta}{\sqrt{5b}} = a + \frac{b}{2}$
Squaring both sides we obtain
 $5b^2/4 + \theta^2/5b^2 - \theta = a^2 + ab + b^2/4$

Which reduces to

 $a^2 + ab - b^2 = -\theta + \theta^2 / 5b^2$

Now $a^{2}+ab-b^{2} \le |a^{2}+ab-b^{2}| = |-\theta + \theta^{2}/5b^{2}|$

Therefore $|a^2+ab-b^2| \le |\theta| + \theta^2/5b^2|$ (5)

Let us assume that b has infinite number of different values which satisfy (4) .It follows that for sufficiently large value of b , $|\theta| + \theta^2/5b^2$ becomes a positive real number ≤ 1 . Therefore for those values of b

a²+ab-b²=0(6)

because a²+ab-b² is necessarily an integer. Equation (6) implies

 $4a^2 + 4ab + b^2 = 5b^2$

That is $2a+b = \sqrt{5b}$ which is impossible, $\sqrt{5b}$ is being irrational .Thus our assumption is proved. This complete the proof of the theorem.