Interior Point Algorithms (M.Sc. Sem-III)

By : Shailendra Pandit
Guest Assistant Prof. of Mathematics
P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com
Call : 9430974625

1. Statement of the Problem

Karmakar's method requires the LP problem in the following form :

$$
\text { Minimize } f=c^{7} X
$$

subject to

$$
\begin{array}{r}
{[a] X=0} \\
x_{1}+x_{2}+\ldots .+x_{n}=1 \tag{i}\\
X \geq 0
\end{array}
$$

where $X=\left\{x_{1} x_{2} \ldots x_{n}\right\}^{T}, c=\left\{c_{1} c_{2} \ldots c_{n}\right\}^{T}$, and $[a]$ is an $m \times n$ matrix. In addition, an interior feasible starting solution to Eq. (i) must be known. Usually, $X=\left\{\frac{1}{n} \frac{1}{n} \ldots \frac{1}{n}\right\}^{T}$ is chosen as the starting point. In addition, the optimum value of f must be zero for the problem. Thus

$$
\begin{gather*}
X^{(1)}=\left\{\frac{1}{n} \frac{1}{n} \ldots \frac{1}{n}\right\}^{T}=\text { interior feasible. } \\
f_{\min }=0 \quad \ldots .(i i) \tag{ii}
\end{gather*}
$$

Although most LP problems may not be available in the form of Eq. (i) while satisfying the conditions of Eq. (ii), it is possible to put any LP problem in a form that satisfies Eqs. (i) and (ii) as indicated below

2. Conversion of an LP Problem into the Required Form

Let the given LP problem be of the form :

$$
\text { Minimize } d^{T} X
$$

subject to

$$
\begin{gathered}
{[\alpha] X=b \quad \ldots(i i i)} \\
X \geq 0
\end{gathered}
$$

To convert this problem into the form of Eq. (i), we use the procedure suggested in Ref. [] and define integers m and n such that X will be an $(n-3)$ component vector and $[\alpha]$ will be matrix of order $m-1 \times n-3$.

We now define the vector $\bar{z}=\left\{\begin{array}{llll}z_{1} & z_{2} & \ldots . & z_{n-3}\end{array}\right\}^{T}$ as

$$
\begin{equation*}
\bar{z}=\frac{X}{\beta} \tag{iv}
\end{equation*}
$$

where β is a constant chosen to have a sufficiently large value such that

$$
\begin{equation*}
\beta>\sum_{i=1}^{n-3} x_{i} \tag{v}
\end{equation*}
$$

for any feasible solution X (assuming that the solution is bounded). By using Eq. (iv), the problem of Eq. (iii) can be stated as follows :

$$
\text { Minimize } \beta d^{T} \bar{z}
$$

subject to

$$
\begin{aligned}
& {[\alpha] \bar{z}=\frac{1}{\beta} b} \\
& \bar{z} \geq 0 \quad \ldots(v i)
\end{aligned}
$$

We now define a new vector z as

$$
z=\left\{\begin{array}{c}
\bar{z} \\
z_{n-2} \\
z_{n-1} \\
z_{n}
\end{array}\right\}
$$

and solve the following related problem instead of the problem in Eqs. (vi) :

$$
\text { Minimize }\left\{\beta d^{T} 000 M\right\} z
$$

subject to

$$
\begin{gather*}
{\left[\begin{array}{cccc}
{[\alpha]} & 0 & -\frac{n}{\beta} b & \left(\frac{n}{\beta} b-[\alpha]\right) e \\
0 & 0 & n & 0
\end{array}\right] z=\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}} \\
e^{T} \bar{z}+z_{n-2}+z_{n-1}+z_{n}=1 \tag{vii}\\
z \geq 0
\end{gather*}
$$

where e is an (m-1) component vector whose elements are all equal to 1 ,
$1, z_{n-2}$ is a slack variable that absorbs the difference between 1 and the sum of other variables, z_{n-1} is constrained to have a value of $1 / \mathrm{n}$, and M is given a large value (corresponding to the artificial variable z_{n}) to force z_{n} to zero when the problem stated in Eq. (iii) has a feasible solution. Equations (iv) are developed such that z is a solution to these equations, $X=\beta \bar{z}$ will be a solution to Eq. (iii) if Eq. (iii) have a feasible solution. Also, it can be verified that the interior point $z=(1 / n) e$ is a feasible solution to Eq. (vii). Equation (vii) can be seen to be the desired from of Eq. (iii) except for a 1 on the right-hand side. This can be eliminated by subtracting the last constraint from the next-to-last constraint, to obtain the required form

$$
\text { Minimize }\left\{\beta d^{T} 000 M\right\} z
$$

subject to

$$
\begin{gathered}
{\left[\begin{array}{cccc}
{[\alpha]} & 0 & -\frac{n}{\beta} b & \left(\frac{n}{\beta} b-[\alpha] e\right. \\
-e^{T} & -1 & (n-1) & -1
\end{array}\right] z=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}} \\
e^{T} \bar{z}+z_{n-2}+z_{n-1}+z_{n}=1 \\
z \geq 0
\end{gathered}
$$

Note : When Eq. (viii) is solved, if the value of the artificial variable $z_{n}>0$, the original problem in Eqs. (iii) is infeasible. On the other hand, if the value of the slack variable $z_{n-2}=0$, the solution of the problem given by Eq. (iii) is unbounded.

Example-1 : Transform the following LP problem into a form required by Karmakar's method :

$$
\text { Minimize } 2 x_{1}+3 x_{2}
$$

subject to

$$
\begin{gathered}
3 x_{1}+x_{2}-2 x_{3}=3 \\
5 x_{1}-2 x_{2}=2 \\
x_{i} \geq 0, i=1,2,3
\end{gathered}
$$

Solution : It can be seen that $d=\left\{\begin{array}{lll}2 & 3 & 0\end{array}\right\}^{T},[\alpha]=\left[\begin{array}{ccc}3 & 1 & -2 \\ 5 & -2 & 0\end{array}\right], b=\left\{\begin{array}{l}3 \\ 2\end{array}\right\}$ and $X=\left\{\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right\}^{T}$. We define the integers m and n as $n=6$ and $m=3$ and choose $\beta=10$ so that

$$
\bar{z}=\frac{1}{10}\left\{\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right\}
$$

Noting that $e=\left\{\begin{array}{lll}1 & 1 & 1\end{array}\right\}^{T}$, Eq. (viii) can be expressed as

$$
\text { Minimize }\left\{\begin{array}{llllll}
20 & 30 & 0 & 0 & 0 & M
\end{array}\right\} z
$$

subject to

$$
\begin{aligned}
& {\left[\left[\begin{array}{ccc}
3 & 1 & -2 \\
5 & -2 & 0
\end{array}\right]\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}-\frac{6}{10}\left\{\begin{array}{l}
3 \\
2
\end{array}\right\} \cdot\left(\frac{6}{10}\left\{\frac{3}{2}\right\}-\left[\begin{array}{ccc}
3 & 1 & -2 \\
5 & -2 & 0
\end{array}\right]\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}\right)\right] z z=0} \\
& \left\{\begin{array}{lll}
-\left\{\begin{array}{llll}
1 & 1 & 1
\end{array}\right\}-1 & 5 & -1
\end{array}\right\} z=0 \\
& z_{1}+z_{2}+z_{3}+z_{4}+z_{5}+z_{6}=1 \\
& z=\left\{\begin{array}{llllll}
z_{1} & z_{2} & z_{3} & z_{4} & z_{5} & z_{6}
\end{array}\right\}^{T} \geq 0
\end{aligned}
$$

where M is a very large number. These equations can be seen to be in the desired form.

3. Algorithm

Starting from an interior feasible point $X^{(1)}$, Karmakar's method finds a sequence of points $X^{(2)}, X^{(3)}, \ldots$. using the following iterative procedure :

1. Initialize the process. Being at the center of the simplex as the initial feasible point $X^{(1)}=\left\{\frac{1}{n} \quad \frac{1}{n} \ldots \frac{1}{n}\right\}^{T}$. Set the iteration number as $k=1$.
2. Test for optimality. Since $f=0$ at the optimum point, we stop the procedure if the following convergence criterior is satisfied :

$$
\left\|c^{T} X^{(k)}\right\| \leq \in \quad(i x)
$$

where \in is a small number. If Eq. (viii) is not satisfied, go to step.
3. Compute the next point, $X^{(k+1)}$. For this, we first find a point $Y^{(k+1)}$ in the transformed unig simplex as

$$
Y^{(k+1)}=\left\{\frac{1}{n} \frac{1}{n} \ldots \frac{1}{n}\right\}^{T}-\frac{\alpha\left([I]-[P]^{T}\left([P][P]^{T}\right)^{-1}[P]\right)\left[D\left(X^{(k)}\right)\right] c}{\|c\| \sqrt{n(n-1)}} \ldots(x)
$$

where $\|c\|$ is the length of the vector $c,[I]$ the identity matrix of order $n,\left[D\left(X^{k}\right)\right]$ an $n \times n$ matrix with all off-diagonal entries equal to 0 , and diagonal entries are equal to the components of the vector $X^{(k)}$ as

$$
\left[D(X)^{(k)}\right]_{i i}=x_{i}^{(k)}, i=1,2, \ldots ., n \quad \ldots(x i)
$$

$[P]$ is an $(m+1) \times n$ matrix whose first m rows are given by $[a]\left[D\left(X^{(k)}\right)\right]$ and the last row is composed of 1^{\prime} is :

$$
[P]=\left[\begin{array}{ccc}
{[\alpha]\left[D\left(X^{(k)}\right)\right.} \tag{xii}\\
1 & 1 \ldots . & 1
\end{array}\right]
$$

and the value of the parameter α is usually chosen as $\alpha=\frac{1}{4}$ to ensure convergence. Once $Y^{(k+1)}$ is found, the components of the new point $X^{(k+1)}$ are determined as

$$
\begin{equation*}
x_{i}^{(k+1)}=\frac{x_{i}^{(k)} y_{i}^{(k+1)}}{\sum_{r=1}^{n} x_{r}^{(k)} y_{r}^{(k+1)}}, i=1,2, \ldots ., n \tag{xiii}
\end{equation*}
$$

Set the new iteration number as $k=k+1$ and go to step 2 .

