M.S c Mathematics – SEM 3 Functional Analysis-L-7 CC-11 Unit 1

E-content 3–Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Equivalent Norms

Let a Linear space L be made into a Normed linear space in two ways, and let the two norms of a vector x in L be denoted by $||x||_1$ and

|| x||₂.

Then these norms are sai to be equivalent i.e $|| ||_1 \sim || ||_2$ if they generate the same topology on L.

Theorem

Let N be a normed linear space and suppose two norms e

 $|| ||_1 and || ||_2$ are defined on N .Then there norms are equivalent if and only if there exists positive real numbers m and m such that $m||x||_1 \le ||x||_2 \le M||x||_1$ for every x in N.

Proof

Let N_i be the NLS with the norm $|| ||_i$ (i=1,2) Let T(x) = x

And we consider T as a linear transformation with domain N_1 and range N_2

Then T^{-1} is a linear transformation with domain N_1 and range N_2 such that

$$T(x) = x$$

 $\Leftrightarrow T^{-1}(x) = x$

Now T is continuous

⇔T is bounded

 $\Leftrightarrow \exists$ positive number M such that

 $||T(X)||_{2} \leq M||x||_{1} \forall x \in N$ $||x||_{2} \leq M||x||_{1} \forall x \in N.....(1)$ T(x) = x

Again T^{-1} is continuous

 $\Leftrightarrow T^{-1}$ is bounded

 $\Leftrightarrow \exists$ positive number K such that

$$||T^{-1}(x)||_{1} \leq K||x||_{2} \forall x \in N_{2}$$
$$||x||_{1} \leq K||x||_{2}[T^{-1}(x) = x]$$
$$\frac{1}{K}||x||_{1} \leq ||x||_{2}[K > 0]$$

 $m||x||_1 \le ||x||_2$(2)

Also T and T^{-1} are continuous

 \Leftrightarrow Inverse images of open seta in $N_2 and N_1$ under T and T^{-1} respectively are open in N_1 and N_2

 \Leftrightarrow Open sets in N_1 and N_2 are the same.

[T and T^{-1} are identically transformation]

 $\Leftrightarrow || ||_1$ and $|| ||_2$ induce the same topology on N

So from (1) and (2)

We conclude that

 $|| ||_1$ and $|| ||_2$ are equivalent.

⇔There exist positive number m and M such that

 $m||x||_1 \le ||x||_2 \le M||x||_1 \ \forall x \in N$