e-content(lecture-8)

by

DR. ABHAY KUMAR (Guest Faculty)

P.G.Department of Mathematics

Patna University Patna

SEM-3 CC-11 UNIT-4(Functional Analysis)

Topic: Theorem on the Hilbert Space.
Theorem: Let M be a closed linear subspace of a Hilbert
space H and let x be a vector in $H-M$ and let d be the distance from x to M

$$
\text { i.e } d=\inf \{\|x-z\|: z \in M\}
$$

Then there exists a unique vector y_{0} in M such that $\left\|x-y_{0}\right\|=d$ and y_{0} is the unique vector of M for which $x-y_{0}$ is orthogonal to M.

Proof: Let $x \in H$ and $d=\inf \{\|x-z\|: z \in M\}$. then for each positive integer n, there exists $z_{n} \in M$ such that

$$
d \leq\left\|x-z_{n}\right\|<d+\frac{1}{n} \text { so the sequence }\left\|x-z_{n}\right\| \rightarrow d
$$

Since M is a subspace of H so it is convex set in H hence

$$
\frac{z_{n}+z_{m}}{2} \in M \text { so } d \leq\left\|x-\frac{z_{n}+z_{m}}{2}\right\|
$$

Now by parallelogram law for $z_{n}-x, z_{m}-x$ we have

$$
\begin{array}{r}
\left\|\left(z_{n}-x\right)+\left(z_{m}-x\right)\right\|^{2}+\left\|\left(z_{n}-x\right)-\left(z_{m}-x\right)\right\|^{2} \\
=2\left\|z_{n}-x\right\|^{2}+2\left\|z_{m}-x\right\|^{2} \\
\Rightarrow\left\|z_{n}-z_{m}\right\|^{2}=2\left\|z_{n}-x\right\|^{2}+2\left\|z_{m}-x\right\|^{2}- \\
\left\|\left(z_{n}+z_{m}\right)-2 x\right\|^{2} \\
\leq 2 d^{2}+2 d^{2}-4 d^{2}=0 \text { as } m, n \rightarrow \infty .
\end{array}
$$

So $\left(z_{n}\right)$ is a Cauchy sequence in M and since M is closed in complete space H so it is complete.Hence there exists y_{0} in M such that $z_{n} \rightarrow y_{0}$. Hence

$$
x-z_{n} \rightarrow x-y_{0} \Rightarrow\left\|x-z_{n}\right\| \rightarrow\left\|x-y_{0}\right\| .
$$

$\left\|x-y_{0}\right\|=\lim _{n \rightarrow \infty}\left\|x-z_{n}\right\|=d$ thus there exists
y_{0} in M such that $\left\|x-y_{0}\right\|=d$.
We have to show that y_{0} is the unique vector of M.
Let y_{1} is a vector of M such that $\left\|x-y_{1}\right\|=d$.
Then $\frac{y_{0}+y_{1}}{2} \in M$. And hence $\left\|x-\frac{y_{0}+y_{1}}{2}\right\| \geq d$.

By parallelogram Law for $y_{0}-x, y_{1}-x$ we have

$$
\begin{aligned}
&\left\|\left(y_{0}-x\right)+\left(y_{1}-x\right)\right\|^{2}+\left\|\left(y_{0}-x\right)-\left(y_{1}-x\right)\right\|^{2} \\
&=2\left\|y_{0}-x\right\|^{2}+2\left\|y_{1}-x\right\|^{2} \\
&\left\|y_{0}-y_{1}\right\|^{2} \leq 2\left\|y_{0}-x\right\|^{2}+2\left\|y_{1}-x\right\|^{2}-4 d^{2} \\
& \leq 2 d^{2}+2 d^{2}-4 d^{2}=0 \\
&\left\|y_{0}-y_{1}\right\|^{2} \leq 0
\end{aligned}
$$

Thus $\left\|y_{0}-y_{1}\right\| \leq 0$. but $\left\|y_{0}-y_{1}\right\| \geq 0$ so we have

$$
\left\|y_{0}-y_{1}\right\|=0 \text { hence } y_{0}-y_{1}=0 \Rightarrow y_{0}=y_{1}
$$

Hence there exists a unique vector y_{0} in M such that $\left\|x-y_{0}\right\|=d$.

We have to show that $x-y_{0}$ is orthogonal to M.
Let $z \in M$ with $\|z\|=1$ then

$$
w=y_{0}+\left(x-y_{0}, z\right) z \in M \text { and we have }
$$

$$
\left\|x-y_{0}\right\|^{2} \leq\|x-w\|^{2}=(x-w, x-w)
$$

$$
=\left\|x-y_{0}\right\|^{2}-\left|\left(x-y_{0}, z\right)\right|^{2}
$$

$$
\Rightarrow\left|\left(x-y_{0}, z\right)\right|=0 \Rightarrow\left(x-y_{0}, z\right)=0
$$

$$
\Rightarrow x-y_{0} \perp z
$$

Hence $x-y_{0}$ is orthogonal to M.

Conversely

let $y_{0} \in M$ and $x-y_{0}$ is orthogonal to M. then for any $z \in M$ we have $y_{0}-z \in M$

So that $x-y_{0} \perp y_{0}-z$
Hence by pythagorian theorem

$$
\begin{aligned}
\|x-z\|^{2}=\| & \left\|\left(x-y_{0}\right)+\left(y_{0}-z\right)\right\|^{2} \\
& =\left\|\left(x-y_{0}\right)\right\|^{2}+\left\|\left(y_{0}-z\right)\right\|^{2}
\end{aligned}
$$

Thus $\left\|x-y_{0}\right\| \leq\|x-z\|$ if $y_{0} \neq z$ this show that y_{0} is unique in M.

END.

