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INTEGER PROGRAMMING PROBLEM
1. Cutting-Plane Algorithm

Example-1
Consider the following ILP.

Maximize 1 27 10z x x 
subject to

1 23 6x x  

1 27 345x x 

1 2, 0x x   and integer
The cutting-plane algorithm modifies the solution space by adding cuts that produce an optimum integer

extreme point.

Initially, we start with the continuous LP optimum 1 2
1 1 166 , 4 , 3 .
2 2 2

z x x    Next, we add cut I, which

produces the (continuous) LP optimum solution 1 262, 4 , 3.
7

z x x
    Then, we add cut II, which together

with cut I and the original constraints, produces the LP optimum 1 258, 4, 3.z x x    The last solution is all
integer, as desired.

The added cuts do not eliminate any of the original feasible integer points, but must pass through at least
one feasible or infeasible integer point. These are basic requirements of any cut.

It is purely accidental that a 2-variable problem used exactly 2 cuts to reach the optimum integer solution.
In general, the number of cuts, though finite, is independent of the size of the problem, in the sense that a
problem with a small number of variables and constraints may require more cuts than a larger problem.

Next, we use the same example to show how the cuts are constructed and implemented algebraically.
Given the slacks 3x  and 4x  for constraints 1 and 2, the optimum LP tableau is given as

The optimum continuous solution is 1 2 3 4
1 1 166 , 4 , 3 , 0, 0
2 2 2

z x x x x     . The cut is developed under

the assumption that all the variables (including the slacks 3x  and 4x ) are integer. Note also that because all the
original objective coefficients are integer in this example, the value of z is integer as well.
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The information in the optimum tableau can be written explicitly as :

3 4
63 31 166
22 22 2

z x x         (z-equation)

2 3 4
7 1 13
22 22 2

x x x          2 equationx 

1 3 4
1 3 14
22 22 2

x x x          1 equationx 

A constraint equation can be used as a source row for generating a cut, provided its right-hand side is
fractional. We also note that the z-equation can be used as a source row because z happens to be integer in this
example. We will demonstrate how a cut is generated from each of these source rows, starting with the z-
equation.

First, we factor out all the non-integer coefficients of the equation into an integer value and a fractional
component, provided that the resulting fractional component is strictly positive. For example,

5 12
2 2

   
 

7 23
3 3

     
 

The factoring ofg the z-equation yields

3 4
19 9 12 1 66
22 22 2

z x x               
     

Moving all the integer components to the left-hand side and all the fractional components to the right-hand
side, we get

 3 4 3 4
19 9 12 1 66 ... 1
22 22 2

z x x x x      

Because 3x  and 4x  are non-negative and all fractions are originally strictly positive, the right-hand side
must satisfy the following inequality :

 3 4
19 9 1 1 ... 2
22 22 2 2

x x   

Next, because the left-hand side in Equation (1), 3 42 1 66,z x x    is an integer value by construction, the

right-hand side, 3 4
19 19 1 ,
22 22 2

x x    must also be integer. It

then follows that (2) can be replaced with the inequality :

3 4
19 9 1 0
22 22 2

x x   

This result is justified because an integer value 
1
2

  must necessarily be 0

The last inequality is the desired cut and it represents a necessary (but not sufficient) condition for obtain-
ing an integer solution. It is also referred to as the fractional cut because all its coefficient are fractions.

Because 3 4 0x x   in the optimum continuous LP tableau given above, the current continuous solution

violates the cut (because it yields 
1 0
2
 ). Thus, if we add this cut to the optimum tableau, the resulting optimum

extreme point moves the solution toward satisfying the integer requirements.
Before showing how a cut is implemented in the optimal tableau, we will demonstrate how cuts can also be

constructed from the constraint equations. Consider the 1x  row;
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1 3 4
1 3 14
22 22 2

x x x  

Factoring the equation yields

1 3 4
21 3 11 0 4
22 22 2

x x x                
     

The associated cut is

2 4
21 3 1 0
22 22 2

x x   

Similarly, the 2x  equation

2 3 4
7 1 3
22 22 2

x x x 
  

is factored as

2 3 4
7 1 10 0 3
22 22 2

x x x           
   

Hence, the associated cut is given as

3 4
7 1 1 0
22 22 2

x x   

Any one of three cuts given above can be used in the first iteration of the cutting-plane algorithm. It is not
necessary to generate all three cuts before selecting one.

Arbitrarily selecting the cut generated from the 2x  row, we can write it in equation form as

 3 4 1 1
7 1 1 , 0 Cut I
22 22 2

x x s s     

This constraint is added to the LP optimum tableau as follows :

Basics x1 x2 x3 x4 s1 Solution

z

x2

x1

s1

0 0 0

0 1 0

1 0 0

0 0 1

63
22

7
22

1
22

-

7
22

-

31
22

1
22
3

22

1
22

-

166
2

13
2
14
2

1
2

-

The tableau is optimal but infeasible. We apply the dual simplex method to recover feasibility, which yields
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The last solution is still non-integer in 1 3andx x . Let us arbitrarily select 1x  as the next source row-that is,

1 4 1
1 6 40 1 4
7 7 7

x x s            
   

The associated cut is

4 1 2 2
1 6 4 , 0
7 7 7

x s s s       (Cut II)

Basics x1 x2 x3 x4 s1 s2 Solution

z

x2

x1

x3

0 0 0 1 9 0 62

0 1 0 0 1 0 3

1 0 0 0

0 0 1 0

s2 0 0 0 1

1
7
1
7

1
7

-

1
7

-

22
7

-

6
7

-

4
4

7
4

1
7

4
7

-

The dual simplex method yields the following tableau :

The optimum solution  1 24, 3, 58x x z    is all integer. It is not accidental that all the coefficients of
the last tableau are integers, a property of the implementation of the factional cut.


