E-content(lecture-7)

By

DR. ABHAY KUMAR (Guest Faculty)

P.G. Department of mathematics

Patna University Patna
SEM-3 CC-11 UNIT-4(Functional analysis)

Topic: Theorem on Hilbert space

Theorem:

(Lemma of F.Riesz on closed convex set in a Hilbert space)
Let A be a closed convex set in a Hilbert space H .Then there exists a unique vector $x_{0} \in A$ such that

$$
\left\|x_{0}\right\| \leq\|y\| \text { for every } y \in A
$$

In other words, a closed convex subset in a Hilbert space H contains a unique vevtor of smallest norm.

$$
\text { Proof: Let } \beta=g l b\{\|x\|: x \in A\} \text {. Then for each }
$$ positive integer n, there exists $x_{n} \in A$ such that

$$
\beta \leq\left\|x_{n}\right\| \leq \beta+\frac{1}{n} \text { Hence the sequence }\left(x_{n}\right) \text { in } A
$$

Is such that $\left\|x_{n}\right\| \rightarrow \beta$. since A is convex so $\frac{x_{m}+x_{n}}{2} \in A$ and hence $\left\|\frac{x_{m}+x_{n}}{2}\right\| \geq \beta$ by the parallelogram law we get

$$
\begin{aligned}
& \qquad \begin{array}{c}
\left\|x_{m}-x_{n}\right\|^{2}=2\left\|x_{m}\right\|^{2}+2\left\|x_{n}\right\|^{2}-\left\|x_{m}+x_{n}\right\|^{2} \\
\leq 2\left\|x_{m}\right\|^{2}+2\left\|x_{n}\right\|^{2}-4 \beta^{2} \\
\rightarrow 2 \beta^{2}+2 \beta^{2}-4 \beta^{2}=0 \text { as } m, n \rightarrow \infty
\end{array} \\
& \text { Hence }\left\|x_{m}-x_{n}\right\| \rightarrow 0 \text { as } m \rightarrow \infty .
\end{aligned}
$$

So $\left(x_{n}\right)$ is a Cauchy sequence in A.Since A is closed in the complete metric space H. Hence A is also complete so there exists $x_{0} \in A$ such that $x_{n} \rightarrow x_{0}$. since the norm is continuous function so $\left\|x_{n}\right\| \rightarrow\left\|x_{0}\right\|$.

But $\left\|x_{n}\right\| \rightarrow \beta$ Since the sequence has the unique limit Hence $\left\|x_{0}\right\|=\beta$. Thus x_{0} is a vector in A with smallest norm .

We have to show that x_{0} is a unique vector in A.
Let x_{1} is an another vector in A different from x_{0}

Such that $\left\|x_{1}\right\|=\beta$.Then $\frac{x_{0}+x_{1}}{2} \in A$ and hence $\quad\left\|\frac{x_{0}+x_{1}}{2}\right\| \geq \beta$.

But by the parallelogram law we have

$$
\begin{aligned}
& \left\|\frac{x_{0}+x_{1}}{2}\right\|^{2}=2\left\|\frac{x_{0}}{2}\right\|^{2}+2\left\|\frac{x_{1}}{2}\right\|^{2}-\left\|\frac{x_{0}-x_{1}}{2}\right\|^{2} \\
& <\frac{1}{2}\left\|x_{0}\right\|^{2}+\frac{1}{2}\left\|x_{1}\right\|^{2}\left(\text { since }\left\|x_{0}-x_{1}\right\|>0\right) \\
& =\frac{1}{2} \beta^{2}+\frac{1}{2} \beta^{2}=\beta^{2} \text {. } \\
& \text { hence }\left\|\frac{x_{0}+x_{1}}{2}\right\|<\beta \text {. }
\end{aligned}
$$

Which is contradiction because $\left\|\frac{x_{0}+x_{1}}{2}\right\| \geq \beta$.
Hence x_{0} is a unique vector in A with smallest norm.
Theorem : Let M be a closed convex subset of a normed
linear space H and let x be a vector in H. Then $x+M$ is also a closed convex subset in H .

Proof:Let $A=x+M=\{x+m: m \in M\}$
) Let $y_{1}, y_{2} \in A$ and $0 \leq \alpha \leq 1$.Then

$$
\begin{aligned}
& y_{1}=x+m_{1}, y_{2}=x+m_{2} \text { for some } m_{1}, m_{2} \in M \\
& \alpha y_{1}+(1-\alpha) y_{2}=\alpha\left(x+m_{1}\right)+(1-\alpha)\left(x+m_{2}\right)
\end{aligned}
$$

$$
=x+\left(\alpha m_{1}+(1-\alpha) m_{2}\right) \in x+M
$$

Since $\left(\alpha m_{1}+(1-\alpha) m_{2}\right) \in M$ and M is convex set
So $x+M$ is also a convex set since M is closed set and so $x+M$ is a closed set thus A is closed and convex set in H.

END.

