e-content

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

SEM-3 CC-11 Unit-4(Functional Analysis)

Topic: Theorems based on the Hilbert Spaces.

Theorem:

(Cauchy-Schwarz Inequality or Schwarz Inequality)

Let E be an inner product space or a Hilbert space.

Then for all $x, y \in E$, $|(x, y)| \le ||x|| \cdot ||y||$

Equality holds iff x and y are linearly dependent.

Proof: we have for any scalar a,

$$0 \le (x - ay, x - ay)$$

$$= (x, x) - \overline{a}(x, y) - a(y, x) + a\overline{a}(y, y)$$

$$= ||x||^2 - \overline{a}(x, y) - a(y, x) + |a|^2 ||y||^2 \dots (1)$$
If $(y, x) = 0$ then $|(x, y)| = |\overline{(y, x)}| = |\overline{0}| = |0| = 0$

and
$$0 \le ||x|| \cdot ||y||$$
 so $|(x,y)| \le ||x|| \cdot ||y||$.

If
$$(y, x) \neq 0$$
 then putting $a = \frac{\|x\|^2}{(y, x)}$ in (1) we get

$$0 \le ||x||^2 - ||x||^2 - ||x||^2 + \frac{||x||^4}{|(y,x)|^2} ||y||^2$$

Hence
$$|(y, x)|^2 \le ||x||^2 \cdot ||y||^2$$

 $\Rightarrow |(x, y)| \le ||x|| \cdot ||y||$

Now
$$|(x,y)| = ||x|| \cdot ||y|| \Leftrightarrow 0 = (x - ay, x - ay)$$

$$\Leftrightarrow 0 = x - ay \Leftrightarrow x = ay$$

 \Leftrightarrow x and y are linearly dependent.

Theorem:

(Continuity of inner product function in a Hilbert space)

Let $x_n \to x$ and $y_n \to y$ in an inner product space E or in a Hilbert space E. Then $(x_n, y_n) \to (x, y)$ i. e the inner product function is jointly continuous in an inner product Space or in a Hilbert space.

Proof: Let $x_n \to x$ and $y_n \to y$ in an inner product space E.

Then
$$|(x_n, y_n) - (x, y)|$$

$$= |(x_n, y_n) - (x, y_n) + (x, y_n) - (x, y)|$$

$$= |(x_n - x, y_n) + (x, y_n - y)|$$

$$\leq |(x_n - x, y_n)| + |(x, y_n - y)|$$

$$\leq ||x_n - x|| ||y_n|| + ||x_n|| ||y_n - y|| \dots (1)$$

Since $x_n \to x$ and $y_n \to y$ so we have

$$||x_n - x|| \to 0 \text{ and } ||y_n - y|| \to 0$$

So
$$||x_n - x|| ||y_n|| + ||x_n|| ||y_n - y|| \to 0$$
 as $n \to \infty$

Hence
$$|(x_n, y_n) - (x, y)| \to 0$$
 as $n \to \infty$

Therefore
$$(x_n, y_n) \rightarrow (x, y)$$
.

So the inner product function is a continuous function.

Theorem (Parallelogram law): For any two elements x and y in an inner product space E or in a Hilbert space E we have

$$||x+y||^2 + ||x-y||^2 = 2 ||x||^2 + 2||y||^2$$

Proof: since $||x+y||^2 = (x+y, x+y)$

$$= (x, x) + (x, y) + (y, x) + (y, y)$$

$$= ||x||^{2} + (x,y) + (y,x) + ||y||^{2}....(1)$$
Again $||x-y||^{2} = (x - y, x - y)$

$$= (x,x) - (x,y) - (y,x) + (y,y)$$

$$= ||x||^{2} - (x,y) - (y,x) + ||y||^{2}...(2)$$

Adding (1) and (2) we get

$$||x+y||^2 + ||x-y||^2 = 2 ||x||^2 + 2||y||^2$$
.

End.