e-content

 byDr Abhay Kumar (Guest Faculty)
P.G. Department of Mathematics
Patna University Patna
sem-3 CC-11(Unit-4)

Topic: Problems based on inner product space.
Problem: Construct an inner product space which is not a Hilbert space or construct an incomplete inner product space.

Solution: we show that the linear space $\mathrm{P}[0,1]$ of all
real-valued polynomials on $[0,1]$ with inner product given
by $(f, g)=\int_{0}^{1} f(t) g(t) d t$ for $f, g \in \mathrm{P}[0,1]$, is an inner product space which is not a Hilbert space .

Clearly $(f, f)=\int_{0}^{1}[f(t)]^{2} d t \geq 0$

$$
(f, f)=0
$$

$$
\begin{gathered}
\text { iff } \int_{0}^{1}[f(t)]^{2} d t=0 \\
\text { iff } \quad f(t)=0 \forall t \in[0,1] \\
\text { Iff } f=0 \\
(g, f)=\int_{0}^{1} g(t) f(t) d t=\int_{0}^{1} f(t) g(t) d t=(f, g)
\end{gathered}
$$

for all $f, g \in \mathrm{P}[0,1]$
Again, $(a f+b g, h)=\int_{0}^{1}[a f(t)+b g(t)] h(t) d t$

$$
=a \int_{0}^{1} f(t) h(t) d t+b \int_{0}^{1} g(t) h(t) d t
$$

$=a(f, h)+b(g, h)$ for all $a, b \in R$ and $f, g, h \in \mathrm{P}[0,1]$.
So the linear space $\mathrm{P}[0,1]$ is an inner product space
The norm defined by the inner product is given by
$\|f\|=(f, f)^{\frac{1}{2}}=\left[\int_{0}^{1}|f(t)|^{2} d t\right]^{\frac{1}{2}}$ and the metric d is defined by the norm is given by

$$
d(f, g)=\|f-g\|=\left[\int_{0}^{1}|f(t)-g(t)|^{2} d t\right]^{\frac{1}{2}}
$$

But the inner product is not complete
For this,
$\operatorname{Let} P_{n}(x)=\sum_{i=0}^{n} \frac{1}{2^{i}} x^{i}$ then for $g(x)=\frac{1}{1-\frac{1}{2} x}, 0 \leq x \leq 1$
So $P_{n} \rightarrow g$ but $g \notin \mathrm{P}[0,1]$. So $\left(P_{n}\right)$ is a Cauchy sequence in $\mathrm{P}[0,1]$ which does not converge to a vector $\mathrm{P}[0,1]$.

Thus $\mathrm{P}[0,1]$ is an inner product space which is not a Hilbert Space.

Problem: If x and y are any two vectors in a Hilbert Space, then show that

$$
\|x+y\|^{2}-\|x-y\|^{2}=4 \operatorname{Re}(x, y)
$$

Solution: we have

$$
\begin{aligned}
&\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+(x, y)+(y, x) \ldots(1) \\
& \text { and }\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-(x, y)+(y, x) \ldots(2) \\
& \text { From (1) and }(2) \text { we get } \\
&\|x+y\|^{2}-\|x-y\|^{2}=(x, y)+(y, x)+(x, y)+(y, x) \\
&=2[(x, y)+(y, x)] \\
&=2[(x, y)+\overline{(x, y)}] \\
&=2[2 \operatorname{Re}(x, y)]=4 \operatorname{Re}(x, y)
\end{aligned}
$$

END.

