M.S c Mathematics -SEM 3 Rigid Dynamics

CC-13 Unit 1

E-content - Pro(Dr)L N RAI

HOD, PG Department of Mathematics, Patna University, Patna.

Generalised Co-ordinates :

The minimum number of co-ordinates required to describe the configuration of the dynamical system at any given time is called the generalised co-ordinates of the system.

Following are the examples
(i) A dynamical system be a simple pendulum of length 1 ; the corresponding generalised co-ordinate is $\boldsymbol{\theta}$,the angular displacement from the vertical.
(ii) A particle on the surface of a sphere; generalised co-ordinates are $\boldsymbol{\theta} \cdot \boldsymbol{\varnothing}$, where $\boldsymbol{\theta}, \boldsymbol{\varnothing}$ are the polar-co-ordinates on the surface.

Degree of freedom
The number of generalised co-ordinates required to describe the configuration of a system is called the degree of freedom.

Holonomic and Non-Holonomic dynamical system

A dynamical system is called holonomic if it is possible to give arbitrary and independent variations to the generalised co-ordinates of the system without violating constraints, otherwise it is non- holonomic .

Example :

ordinates of a dynamical system . Then , for a holonomic system , we can change $q_{r}{ }^{\text {to }} q_{r}+\partial q_{r}$ without making any change in the remaining (\boldsymbol{n} 1) co-ordinates.

For a dynamical system, prove that $T+$
 V = Constant

Lagrange's Equation of motion for holonomic conservative dynamical system is

$$
\frac{d}{d t}\left(\frac{\partial T}{\dot{q}_{r}}\right)-\frac{\partial T}{\partial q_{r}}=-\frac{\partial V}{\partial q_{r}} ; r=1,2, \ldots \ldots n
$$

Multiplying both side by \dot{q}_{r}, we get

$$
\begin{gather*}
\sum_{r=1}^{n} \dot{q}_{r} \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{r}}\right)-\sum_{r=1}^{n} \dot{q}_{r} \frac{\partial T}{\partial q_{r}} \\
=-\sum_{r=1}^{n} \dot{q}_{r} \frac{\partial V}{\partial q_{r}} \\
\text { or } \sum_{r=1}^{n} \frac{d}{d t}\left(\dot{q}_{r} \frac{\partial T}{\partial q_{r}}\right) \\
-\sum_{r=1}^{n}\left(\ddot{q}_{r} \frac{\partial T}{\partial \dot{q}_{r}}+\dot{q}_{r} \frac{\partial T}{\partial q_{r}}\right) \\
=-\sum_{r=1}^{n} \dot{q}_{r} \frac{\partial V}{\partial q_{r}} \ldots \ldots . . .(1) \tag{1}
\end{gather*}
$$

But Tis a homogeneous quadratic function in $\dot{\boldsymbol{q}}_{1}, \dot{\boldsymbol{q}}_{2}, \ldots \ldots \ldots \ldots . \dot{\boldsymbol{q}}_{\boldsymbol{n}}$ then $\sum_{r=1}^{n} \dot{q}_{r} \frac{\partial V}{\partial q_{r}}$
= 27 (2)[using Euler's theorem]
Also

$$
\boldsymbol{T}=\boldsymbol{T}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \ldots \ldots . \boldsymbol{q}_{n}, \dot{q}_{1}, \dot{q}_{1}, \dot{q}_{1} \ldots \ldots \dot{\boldsymbol{q}}_{1}\right.
$$

$$
\begin{gather*}
\frac{d T}{d t}=\sum_{r=1}^{n} \frac{\partial r}{\partial q_{r}} \dot{q}_{r}+\sum_{r=1}^{n} \frac{\partial T}{\partial \dot{q}_{r}} \ddot{q}_{r \ldots \ldots} \tag{3}\\
\text { Also we have } \\
V=V\left(q_{1}, q_{2} \ldots \ldots . q_{n}\right) \text { then } \\
\frac{d V}{d t}=\sum_{r=1}^{n} \frac{\partial V}{\partial q_{r}} \dot{q}_{r} \ldots \ldots \ldots \text { (4) }
\end{gather*}
$$

using (2), (3), (4), in equation (1), we get

$$
\begin{gathered}
\frac{d}{d T}(2 T)-\frac{d T}{d t}=-\frac{d V}{d t} \\
2 \frac{d T}{d t}-\frac{d T}{d t}=-\frac{d V}{d t} \\
\frac{d T}{d t}=-\frac{d V}{d t} \\
\frac{d}{d t}(T+V)=0 \\
\Rightarrow T+V=\text { Constant } \\
\text { Proved }
\end{gathered}
$$

