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Generalised Co-ordinates :

The minimum number of co-ordinates required to describe the
configuration of the dynamical system at any given time is called the

generalised co-ordinates of the system.
Following are the examples

(i) A dynamical system be a simple pendulum of length 1 ; the
corresponding generalised co-ordinate is 0 ,the angular
displacement from the vertical.

(ii) A particle on the surface of a sphere; generalised co-ordinates
are 0,%, where 0,¢ are the polar-co-ordinates on the
surface.

Degree of freedom
The number of generalised co-ordinates required to describe

the configuration of a system is called the degree of freedom.



Holonomic and Non-Holonomic dynamical system

A dynamical system is called holonomic if it is possible to
give arbitrary and independent variations to the generalised
co-ordinates of the system without violating constraints,
otherwise it is non- holonomic.
Example :
Let 1 AP be n- generalised co-
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ordinates of a dynamical system . Then , fora
holonomic system ,we can change to
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without making any change in the remaining (n _

1) co-ordinates.

For a dynamical system, prove thatT N

V = Constant
Lagrange’s Equation of motion for holonomic

conservative dynamical system is
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Multiplying both side by q,, we get
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Also we have
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using (2),(3),(4),in equation (1), we get
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Proved






