M.S c Mathematics -SEM 2 Number Theor CC-10 Unit 3

E-content 3-By Dr Abhik Singh, Guest faculty, PG Department of Mathematics, Patna University, Patna

Content: Reciprocity Law, Jacobi Symbol, Irrational Number,

Reciprocity Law

Theorem: Let P and q be two distinct odd primes then
$(p / q)(q / p)=(-1)^{(p-1) / 2 .(q-1) / 2}$
Proof : We know that
$\left(\frac{\mathrm{p}}{\mathrm{q}}\right)={ }^{(-1)} \sum_{k=1}^{1 / 2(p-1)}[k q / 2]^{,(\mathrm{p} / \mathrm{q})=(-1)} \sum_{l=1}^{1 / 2(q-1)}[l p / q]$
Then to prove the required result
$\sum_{k=1}^{1 / 2(p-1)}[k q / p]^{+} \sum_{l=1}^{1 / 2(q-1)}[l p / q]=(p-1) / 2(q-1) / 2$
For this consider the $\mathrm{p}-1 / 2, \mathrm{q}-1 / 2$ integers
$l^{\mathrm{p-kq}}$
Where $l=1,2 \ldots \ldots \ldots \ldots \ldots \ldots1 / 2(q-1), k=1,2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots1 / 2(p-1)$.

It must be noted that there is no zero among them, because if $l p={ }^{k q}$, then $q \nmid l^{p}$ which is not possible.

Now we shall show that among these $p-1 / 2 \cdot q-1 / 2$ integers, there are $\sum_{l=1}^{1 / 2(q-1)}[l p / q]$ positive integers and $\sum_{k=1}^{1 / 2(p-1)}[k q / 2]^{\text {negative }}$ integers

So we see that for a given l, the necessary and sufficient condition that $l p \ldots \mathrm{kq}>0$ is $l p / \mathrm{q}>\mathrm{k} \quad$ or $^{1} \leq k \leq l p / q$
${ }^{\text {But }} l p / q<\frac{q / 2 p}{q}=1 / 2 p$
$\frac{l p}{q} \leq \frac{1}{2}(p-1)$
Which gives, for any given l, the number of such k's is $\frac{l p}{q}$.
Therefore the numbers $l p-\mathrm{kq}$, there are $\sum_{l=1}^{1 / 2(q-1)}[l p / q]$ positive integers.

Similarly there are $\sum_{k=1}^{1 / 2(p-1)}[k q / 2]$ negative integers.
Hence (1) exist.

Question . (1)Find (168/11) (ii) Evaluate (-23/59)

JACOBI SYMBOL

Let P be an odd prime integer with prime factorization.

$$
\begin{aligned}
& \mathrm{P}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \ldots . ~ \\
& \mathrm{n}
\end{aligned}\left(\text { possibly } \mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{j}} \text { for } \mathrm{i} \neq \mathrm{j}\right) .
$$

Where the symbols ($\frac{a}{p i}$)on the RHS of the equality are Legendre symbols and the symbol ((\underline{a}) on the LHS is called Jacobi symbol. p

Remarks

${ }_{1}$. When p is prime, the Jacobi symbol is the same as the
Legendre symbol, hence the Jacobi symbol may be considered as
a generalization of the Legendre symbol.
2. The value of Jacobi symbol is also 1 or -1 .
3. When $\left(\frac{a}{p}\right)=-1$, the congruence $\times 2 \equiv$ a (modp) has no solution p
4. $\left(\frac{1}{p}\right)=1,\left(\frac{a \cdot a}{p}\right)=1$
5. If $\mathrm{a} \equiv \mathrm{b}(\operatorname{modp})$, then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$

Theorem(1)
$\left(\frac{a}{P}\right)\left(\frac{a}{R}\right)=\left(\frac{a}{P R}\right)$ where R is an odd positive integer.
Proof : Let $R=r_{1} r_{2} \ldots \ldots r_{t}$ where $r_{1,} r_{2}, \cdots \ldots \ldots r_{t}$ are odd primes no necessarily all distinct. Then by definition of Jacobi symbol

Theorem(2)

Let p be an odd prime and Q any odd positive integer prime to p . then $\left(\frac{Q}{P}\right)=(-1)(\mathrm{p}-1) / 2 \times(\mathrm{Q}-1) / 2\left(\frac{P}{Q}\right)$
Proof : Let Q=q1q2. \qquad qn are all odd primes and not necessarily all distinct. Then $\left.\left(\frac{Q}{P}\right)=\left(\frac{q 1}{p}\right)\left(\frac{q 2}{p}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \frac{q n}{p}\right)$

By law of quadratic reciprocity we know that it is equal to

1/2.qn-1/2($\left.\frac{p}{q n}\right)$
$=(-1)(p-1) 2\{(q 1-1) / 2+(q 2-1) / 2+$ \qquad $(. q \mathrm{n}-1) / 2)\}\left(\frac{P}{Q}\right)$
$=(-1) \mathrm{p}-1 / 2\{(\mathrm{Q}-1) / 2+2 \mathrm{u})\left(\frac{P}{Q}\right)$
$=(-1) \mathrm{p}-1 / 2 \cdot \mathrm{Q}-1 / 2\left(\frac{P}{Q}\right)$

Proved

Irrational Number

An irrational number as a real number which cannot be expressed in the form $\frac{a}{b}$ where a and b stand for integers.

Example- e, $\pi^{\prime} \sqrt{2},{ }^{7} \sqrt{ } 11^{\prime}, \mathrm{e}^{\pi}, \pi^{\mathrm{e}}$, etc

1. Prove $\sqrt{2}$ is irrational

Soln : Let us assume that,$\sqrt{2}=\frac{a}{b}$ for some integers a, b such that $(a, b)=1$

It follows that $a^{2}=2 b^{2}$
This implies that a^{2} is even .consequently a is even because if a is odd , a^{2} would also be odd.

Let us then put $\mathrm{a}=2 \mathrm{a}$, for some integer a_{1}. Then we obtain from (2) $4 a_{1}{ }^{2}=2 b^{2}$ or $b^{2}=2 a_{1}{ }^{2}$.

Thus both a and b are even. But This contradicts our assumption
(1).It follows that,$\sqrt{2}$ cannot be expressed in the form $\frac{a}{b}$.

This proves the theorem.

Theorem (1)

If k is a positive integer then e^{k} is irrational.
Proof Assume that the theorem is false. Hence $\mathrm{e}^{\mathrm{k}}=\frac{a}{b}$ for some positive integers a, b.

Let us now consider the definite integral
$\mathrm{I}=\mathrm{bk}^{2 \mathrm{n}+1} \int_{0}^{1} e^{\mathrm{kx}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
Where $f(x)=x^{n}(1-x)^{n} / n$!
Integrating by parts we get
I=b $k^{2 n+1}\left[\left(e^{k x} / k f(x)-e^{k x} / k^{2} f^{\prime}(x)+e^{k x} / k^{3} f^{\prime \prime}(x)-\ldots . . .\right.\right.$.
.$\left.+e^{k x} / k^{2 n+1} f^{(2 n)}(x)\right] 0^{1}$
Since $f^{(2 n+1)}(x)=0$ for $k>0$. The general term on the right of the above equality is numerically of the form
$\mathrm{bk}^{2 n+1}\left(\mathrm{e}^{\mathrm{kx}} / \mathrm{k}^{\mathrm{r}+1} \mathrm{f}^{(r)}(\mathrm{x})\right)^{1}{ }_{0}$ where $0 \leq r \leq 2 \mathrm{n}$
$=b k^{2 n+1}\left(a / b 1 / k^{r+1} f^{(r)}(1)-1 / k^{r+1} f^{(r)}(0)\right\}$
$=k^{2 n+1} / k^{r+1}\left\{\left(a f^{(r)}(1)-b f^{(r)}(o)\right\}\right.$
=an integer
Because $r+1 \leq 2 n+1$, and $f^{(r)}(1), f^{(r)}(0)$ are integers
Hence I is an integer for all n
On the other hand $0<f(x)<1 / n!, 0<x<1$. Therefore
$0<e^{k x f}(x)<e^{k x} / n!$
$0<\mathrm{bk}^{2 \mathrm{n}+1} \int_{0}^{1} e^{\mathrm{kxf}}(\mathrm{x}) \mathrm{dx}<\mathrm{bk}^{2 \mathrm{n}+1} / \mathrm{n}!\int_{0}^{1} e^{\mathrm{kx}} \mathrm{dx}$
$0<1<$ b $^{2 n+1} / n!e^{k}-1 / k$
$0<1<b e^{k}\left(k^{2}\right)^{n} / n!$
But we know that $\left(k^{2}\right)^{n} / n!\rightarrow 0$ as $n \rightarrow \infty$.
Hence $\mathrm{I}<1$ for all sufficiently large value of n .
But this contradicts (1).
It follows that e^{k} is an irrational.
Assignment: (i) Prove π^{2} is irrational. (ii)Prove π is irrational

