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1. PARAMETRIC LINEAR PROGRAMMING

Parametric linear programming is an extension of the post-optimal analysis presented. It investigates the
effect of predetermined continuous variations in the objective function coefficients and the right-hand side of the
constraints on the optimum solution.

Let  1 2, , ....., nX x x x  and define the LP as

Maximize 
1

| , 0


 
   
 


n

j j
j

z CX P x b X

In parametric analysis, the objective function and right-hand side vectors, C and b, are replaced with the
parameterized functions C(t) and b(t), where t is the parameter of variation. Mathematically, t can assume any
positive or negative value. In practice, however, t usually represents time, and hence it is non-negative. In this
presentation we will assume 0t .

Parametric Changes in C

Let  , ,
i iB i BX B C t  be the elements that define the optimal solution associated with critical it  (the compu-

tations start at 0 0t  with 0B  as its optimal basis). Next, the critical value 1it  and its optimal basis, if one exists,

is determined. Because changes in C can affect only the optimality of the problem, the current solution 1
iB iX B b

will remain optimal for some  it t  so long as the reduced cost,     ,j jz t c t  satisfies the following optimality
condition :

       1 0,   
ij j B i j jz t c t C t B P c t  for all j

The value of 1it  equals the largest  it t  that satisfies all the optimality conditions.

Note that nothing in inequalities requires  C t  to be linear in t. Any function  C t , linear or non-
linear, is acceptable. However, with non-linearity the numerical manipulation of the resulting inequalities may be
cumbersome.
Example-1

Maximize      1 2 33 6 2 2 5 5     z t x t x t x
subject to

1 2 32 40  x x x

1 33 2 60 x x

    1 24 30 x x

1 2 3, , 0x x x
We have

   3 6 , 2 2 , 5 5 , 0    C t t t t t

The variables 4 5,x x  and 6x  will be used as the slack variables associated with the three constraints.
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Optimal Solution at t = t0 = 0

1 2 3 4 5 6

2

3

6

4 0 0 1 2 0 160
1 1 11 0 0 5
4 2 4

3 10 1 0 0 30
2 2
2 0 0 2 1 1 10

 



Basic x x x x x x Solution
z

x

x

x

   
0 2 3 6, , 5, 30, 10 T T

BX x x x

   
0

2 2 , 5 5 , 0  BC t t t

1
0

1 1 0
2 4

10 0
2

2 1 1



  
 
   
   
 

B

The optimality conditions for the current non-basic vectors, 1 4,P P  and 5 ,P  are

      
0

1
0 1, 4, 5

4 14 , 1 , 2 3 0


     B j j j

C t B P c t t t t

Thus, 
0BX  remains optimal so long as the following conditions are satisfied :

4 14 0 t
1 0 t
2 3 0 t

Because 0,t  the second inequality gives 1t  and the remaining two inequalities are satisfied for all

0t . We thus have 1 1,t  which means that 
0BX  remains optimal (and feasible) for 0 1. t

The reduced cost    4 4 1  z t c t t  equals zero at 1t  and becomes negative for 1.t  Thus, 4P  must

enter the basis for 1.t  In this case, 2P  must leave the basis. The new basic solution 
1BX  is the alternative

solution obtained at 1t  by letting 4P  enter the basis – that is,  
1 4 3 6, , T

BX x x x  and  1 4 3 6, , .B P P P

Alternative Optimal Basis at 1 1 t t

1
1 1

11 0
21 1 0

10 2 0 , 0 0
2

0 0 1 0 0 1



  
   
           

  
 

B B

Thus,    
1

1
4 3 6 1, , 10, 30, 30  T T

BX x x x B b

   
1

0, 5 5 , 0 BC t t
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The associated non-basic vectors are 1 2, ,P P  and 5 ,P  and we have

    1

1
1 1, 2, 5

9 27 5 5, 2 2 , 0
2 2





       
 

B j j j

t tC t B P c t t

According to these conditions, the basic solution 
1Bx  remains optimal for all 1t  Observe that the optimality

condition, 2 2 0,  t  automatically “remembers” that 
1BX  is optimal for a range of t that starts from the last

critical value 1 1.t  This will always be the case in parametric programming computations.
The optimal solution for the entire range of t is summarized below. The value of z is computed by direct

substitution.

1 2 3

0 1 0 5 30 160 140
1 0 0 30 150 150

  
 

t x x x z
t t

t t

Parametric Changes in b

The parameterized right-hand side  b t  can affect only the feasibility of the problem.
The critical values of t are thus determined from the following condition :

   1 0 BX t B b t
Example-2

1 2 3Maximize 3 2 5  z x x x

subject to 1 2 32 40   x x x t

1 33 2 60 2  x x t

1 24 30 7  x x t

1 2 3, , 0x x x
Assume that 0t .

At 0 0 t t . We thus have

   
0 2 3 6, , 5, 30, 10 T T

BX x x x

1
0

1 1 0
2 4

10 0
2

2 1 1



  
 
   
   
 

B

To determine the first critical value 1,t  we apply the feasibility conditions    
0

1
0 0, BX t B b t  which

yields

2

3

6

5 0
30 0

10 3 0

     
            
          

x t
x t
x t



– 4 –

These inequalities are satisfied for 
10 ,
3

t  meaning that 1
10
3

t  and that the basis 0B  remains feasible for

the range 
100 .
3

t   However, the values of the basic variables 2 3, ,x x  and 6x  will change with t as given

above.

The value of the basic variable  6 10 3x t   will equal zero at 1
10
3

t t  , and will become negative for

10 .
3

t   Thus, at 
10 ,
3

t   we can determine the alternative basis 1B  by applying the revised dual simplex method.

The leaving variable is 6x .

Alternative Basis at 1
10
3

t t 

Given that 6x  is the leaving variable, we determine the entering variable as follows :

   
0 02 3 6, , , 2, 5, 0T

B BX x x x C 

Thus,

     
0

1
01, 4, 5 1, 4, 5

4, 1, 2j j B j jj j
z c C B P c

 
   

Next, for non-basic , 1, 4, 5,jx j   we compute

      1 1
0 6 1 4 5 0 1 4 5Row of associated with , , Third row of , ,B x P P P B P P P 

                               1 4 52, 1, 1 , ,P P P 

                              2, 2, 1 
The entering variable is thus associated with

1 1min , ,
2 2

 
     

 

Thus, 4P  is the entering vector. The alternative basic solution and its 1B  and 1
1B  are

 
1 2 3 4, , T

BX x x x

  1
1 2 3 4 1

10 0
42 1 1

1, , 0 2 0 , 0 0
2

4 0 0 1 11
2 2

B P P P B

 
 

   
            

   
 

The next critical value 2t  is determined from the feasibility conditions,    
1

1
1 0,BX t B b t 

2

3

4

30 7
04

30 0
10 3 0

2

t
x
x t
x t

 
    
         

         
 



– 5 –

These conditions show that 1B  remains feasible for 
10 30 .
3 7

t 

At 2
30 ,
7

t t   an alternative basis can be obtained by the revised dual simplex method. The leaving

variable is 2 ,x  because it corresponds to the condition yielding the critical value 2.t

Alternative Basis at 2
30
7

t t 

Given that 2x  is the leaving variable, we determine the entering variable as follows :

   
1 12 3 4, , , 2, 5, 0T

B BX x x x C 

Thus,

   1

1
11, 5, 6 1, 5, 6

5 15, ,
2 2j j B j jj j

z c C B P c

 

      
 

Next, for non-basic , 1, 5, 6,jx j   we compute

     1 1
1 2 1 5 6 1 1 5 6Row of associated with , , First row of , ,B x P P P B P P P 

   1 5 6
10, 0, , ,
4

P P P   
 

1 1, 0,
4 4

   
 

Because all the denominator elements, 
1 1, 0, ,
4 4

 
 
 

 are 0 , the problem has no feasible solution for 
30
7

t 

and the parametric analysis ends at 2
30 .
7

t t 

The optimal solution is summarized as

 

1 2 3

100 0 5 30 160 3
3

10 30 30 7 30 30 165
3 7 4 2

30 No feasible solution exists
7

t x x x z

t t t t

tt t t

t

    


   



PROBLEM SET
1. In Example-2, find the first critical value, 1,t  and define the vectors of 1B  in each of the following cases :

(a)    40 2 , 60 3 , 30 6 Tb t t t t   

(b)    40 , 60 2 , 30 5 Tb t t t t   
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2. Study the variation in the optimal solution of the following parameterized LP, given 0.t 

1 2 3Minimize 4 2z x x x  
subject to

1 2 33 2 3 3x x x t   

1 2 34 3 2 6 2x x x t   

1 2 32 5 4x x x t   

1 2 3, , 0x x x 
3. The analysis in this section assume that the optimal LP solution at t = 0 is obtained by the (primal) simplex
method. In some problems, it may be more convenient to obtain the optimal solution by the dual simplex
method. Show how the parametric analysis can be carried out in this case, and then analyze the LP of example,
assuming that 0t   and the right-hand side vector is :

   3 2 , 6 , 3 4 Tb t t t t   

4. Solve problem-2 assuming that the right-hand side is changed to

   2 2 23 3 , 6 2 , 4
T

b t t t t   

Further assume that t can be positive, zero, or negative


