e-content

BY

DR. ABHAY KUMAR (GUEST FACULTY)

P.G. Department of mathematics

Patna university, patna
sem-3 (Functional analysis)
Topic: Theorem based on inner product spaces and Hilbert spaces.

Theorem: Let E be an inner product space over a field K. If a norm on E is defined by

$$
\|x\|=+\sqrt{(x, x)}=+(x, x)^{\frac{1}{2}} \quad \forall x \in E
$$

Then E is a normed linear space.
Thus every inner product space is a normed linear space.

Proof: Since $(x, x) \geq 0 \Rightarrow \sqrt{(x, x)} \geq 0 \Rightarrow\|x\| \geq 0$ Also

$$
\|x\|=0 \Leftrightarrow(x, x)=0 \Leftrightarrow x=0
$$

Again $\|\alpha x\|^{2}=(\alpha x, \alpha x)=\alpha(x, \alpha x)=\alpha \bar{\alpha}(x, x)=$ $\|\alpha\|^{2}\|x\|^{2}$
$\|\alpha x\|=\|\alpha\|\|x\|$
We have to prove the last condition of the normed Linear space for this we first prove that $|\operatorname{Re}(x, y)| \leq\|x\|\| \| y \| . \forall x, y \in E$ where $|\operatorname{Re}(x, y)|$ denotes the real part of (x, y).

Since for all $x, y \in E$ and $\beta \in K$ we have $0 \leq(x+\beta y, x+\beta y)=(x, x)+\beta(y, x)+\bar{\beta}(x, y)$ $+\beta \bar{\beta}(y, y)$

$$
=\|x\|^{2}+\beta \overline{\beta(x, y)}+\bar{\beta}(x, y)+\|\beta\|^{2}\|y\|^{2}
$$

For real β we have

$$
\|x\|^{2}+\beta[\overline{(x, y)}+(x, y)]+\|\beta\|^{2}\|y\|^{2} \geq 0
$$

$$
\|x\|^{2}+2 \operatorname{Re}(\mathrm{x}, \mathrm{y}) \beta+\|\beta\|^{2}\|y\|^{2} \geq 0
$$

Putting $a=\|y\|^{2}, b=2 \operatorname{Re}(x, y), c=\|x\|^{2}$ we have

$$
a \beta^{2}+b \beta+c \geq 0
$$

This implies that $b^{2} \leq 4 a c$

So $[2 \operatorname{Re}(x, y)]^{2} \leq 4\|x\|^{2} .\|y\|^{2}$
Hence $|\operatorname{Re}(x, y)| \leq\|x\|\|y\|$.
Now we have $\|x+y\|^{2}=(x+y, x+y)$

$$
\begin{aligned}
& \quad \quad=(x, x)+(x, y)+(y, x)+(y, y) \\
& =(x, x)+(x, y)+\overline{(x, y)}+(y, y) \\
& =(x, x)+2 \operatorname{Re}(x, y)+(y, y) \\
& =\|x\|^{2}+2 \operatorname{Re}(\mathrm{x}, y)+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \quad[\text { from }(1)] \\
& =[\|x\|+\|y\|]^{2}
\end{aligned}
$$

$$
\|x+y\| \leq\|x\|+\|y\| .
$$

Hence all the conditions of the the normed linear space is satisfied hence E is a normed linear space
with respect to the norm $\|x\|=+\sqrt{(x, x)}=+(x, x)^{\frac{1}{2}}$ $\forall x \in E$ defined on E.

Def(Hilbert space):Let E be an inner product space

And let a norm on E be defined by $\|x\|=+\sqrt{(x, x)}=$ $+(x, x)^{\frac{1}{2}} \quad \forall x \in E$.Let d be the metric on E defined by $d(x, y)=\|x-y\| \forall x \in E$ If (E, d) is a complete metric space then E is said to be a Hilbert space.

Thus every Hilbert space is a Banach space
Example: The real linear space R^{n} is a Hilbert space With respect to the inner product defined by

$$
\begin{aligned}
& \quad(x, y)=\sum_{i=1}^{n} x_{i} y_{i} \\
& \text { for } x=\left(x_{1}, x_{2} \ldots x_{n}\right), y=\left(y_{1}, y_{2}, \ldots y_{n}\right) \in R^{n}
\end{aligned}
$$

The norm defined by the inner product is given by
$\|x\|=(x, x)^{\frac{1}{2}}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$ and metric d is defined by
$d(x, y)=\|x-y\|=\left[\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right]^{\frac{1}{2}}$ then $\left(R^{n}, d\right)$
Is a complete metric space and hence R^{n} is a real Hilbert space.

END.

