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1. DEFINITION OF THE DUAL PROBLEM

The dual problem is an LP defined directly and systematically from the primal (or original) LP model. The
two problems are so closely related that the optimal solution of one problem automatically provides the optimal
solution to the other.

In most LP treatments, the dual is defined for various forms of the primal depending on the sense of

optimization (maximization or minimization), types of constraints d , , or ,    and orientation of the vari-
ables (non-negative or unrestricted). This type of treatment is somewhat confusing, and for this reason we offer
a single definition that automatically subsumes all forms of the primal.

1. A dual variable is defined for each primal (constraint) equation.
2. A dual constraint is defined for each primal variable.
3. The constraint (column) coefficients of a primal variable define the left-hand-side coefficients of the

dual constraint and its objective coefficient define the right-hand side.
4. The objective coefficients of the dual equal the right-hand side of the primal constraint equations.

Rules for Constructing the Dual Problem

Primal problem
objectiven

Maximization
Minimization

Objective

Maximization
Minimization

Constraints type Variables sign

Unrestricted
Unrestricted

Dual problem

* All primal constraints are equations with non-negative right-hand side and all the variables are non-negative.

The rules for determining the sense of optimization (maximization or minimization), the type of the con-

straint  , , or   , and the sign of the dual variables are summarized in above table. Note that the sense of
optimization in the dual is always opposite to that of the primal. An easy way to remember the constraint type in

the dual  . .,i e or   is that if the dual objective is minimization (i.e., pointing down), then the constraints are
all of the type   (i.e., pointing up). The opposite is true when the dual objective is maximization.

The following examples demonstrate the use of the rules in above and also show that our definition incor-
porates all forms of the primal automatically.
Example-1.1

Primal Primal in equation form Dual variables
Maximize 1 2 35 12 4  z x x x Maximize 1 2 3 45 12 4 0   z x x x x

subject to subject to

1 2 32 10  x x x 1 2 3 42 10   x x x x 1y

2 32 3 8  x x x 1 2 3 42 3 0 8   x x x x 2y

1 2 3, , 0x x x 1 2 3 4, , , 0x x x x
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Dual problem
Minimize 1 210 8w y y 

subject to

1 22 5y y 

1 22 12y y 

1 23 4y y 

 1 2
1 2

1 2

0 0
0, unrestricted

, unrestricted
y y

y y
y y

  
 


Example-1.2

Primal Primal in equation form Dual variables
Minimize 1 215 12 z x x Minimize 1 2 3 415 12 0 0   z x x x x

subject to subject to

1 22 3 x x 1 2 3 42 0 3   x x x x 1y

1 22 4 5 x x 1 2 3 42 4 0 5   x x x x 2y

1 2, 0x x 1 2 3 4, , , 0x x x x
Dual Problem

Maximize 1 23 5w y y 

subject to 1 22 15y y 

1 22 4 12y y 

 
1

2 1 2

1 2

0
0 0, 0

, unrestricted

y
y y y

y y

  
   



Example 1.3
Primal Primal in equation form Dual variables

Substitute 1 1 1
  x x x

Maximize 1 25 6 z x x Maximize 1 1 25 5 6   z x x x
subject to subject to

1 22 5 x x 1 1 22 5   x x x 1y

1 25 3  x x 1 1 2 35 3     x x x x 2y

1 24 7 8 x x 1 1 2 44 4 7 8    x x x x 3y

1x  unrestricted, 2 0x 1 1 2 3 4, , , , 0  x x x x x
Dual Problem

Minimize 1 2 35 3 8z y y y  
subject to

 1 2 3
1 2 3

1 2 3

4 5
4 5

4 5
y y y

y y y
y y y

   
        

1 2 32 5 7 6y y y  
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 
2

3 1 2 3

1 2 3

0
0 unrestricted, 0, 0

, , unrestricted

y
y y y y

y y y

  
   



The first and second constraints are replaced by an equation. The general rule in this case is that an
unrestricted primal variable always corresponds to an equality dual constraint. Conversely, a primal equation
produces an unrestricted dual variable, as the first primal constraint demonstrates.
Summary of the Rules for Constructing the Dual. The general conclusion from the preceding example is that
the variables and constraints in the primal and dual problems are defined by the rules in Table 1.3. It is a good
exercise to verity that these explicit rules are subsumed by the general rules in Table 1.2.

Table 1.4 Rules for Constructing the Dual Problem

Constraints 0
0

Unrestricted
Variables Constraints

0
0

Unrestricted

 
  
 

  
  

 

Maximization problem Minimization problem

1. Write the dual for each of the following primal problems :
(a) Maximize 1 25 2  z x x

subject to 1 2 2   x x

1 22 3 5 x x

1 2, 0x x

(b) Minimize 1 26 3 z x x
subject to

1 2 36 3 2  x x x

1 2 33 4 5  x x x

1 2 3, , 0x x x

(c) Maximize 1 2 z x x
subject to

1 22 5 x x

1 23 6 x x

1 2,x x  unrestricted
2. Optimal Dual Solution

The primal and dual solutions are so closely related that the optimal solution of either problem directly
yields (with little additional computation) the optimal solution to the other. Thus, in an LP model in which the
number of variables is considerably smaller than the number of constraints, computational savings may be real-
ized by solving the dual, from which the primal solution is determined automatically. This result follows because
the amount of simplex computation depends largely (though not totally) on the number of constraints.
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Method 1.

Optimal primal z-coefficient of starting variable 
Optimal value of
dual variable

Original objective coefficient of 

i

i
i

x

y
x

 
          

 

Method 2.

Row vector of 
Optimal value of Optimal primal

original objective coefficients
dual variable inverse

of optimal primal basic variables

 
             

 

The elements of the row vector must appear in the same order in which the basic variables are listed in the
Basic column of the simplex tableau.
Example 1.4
Consider the following LP :

Maximize 1 2 35 12 4  z x x x
subject to

1 2 32 10  x x x

1 2 32 3 8  x x x

1 2 3, , 0x x x

To prepare the problem for solution by the simplex method, we add a slack 4x  in the first constraint and an
artificial R in the second. The resulting primal and the associated dual problems are thus defined as follows :

Primal Dual
Maximize 1 2 35 12 4   z x x x MR Minimize 1 210 8 w y y

subject to subject to

1 2 3 42 10   x x x x 1 22 5 y y

1 2 32 3 8   x x x R 1 22 12 y y

1 2 3 4, , , , 0x x x x R 1 0y

 2 2 unrestricted  y M y
We not show how the optimal dual values are determined using the two methods described at the start of

this section.
Method-1 : The starting primal variables 4x  and R uniquely correspond to the dual variables 1y  and 2 ,y

respectively. Thus, we determine the optimum dual solution as follows :
Starting primal basic variables 4x R

z-equation coefficients
29
5

2
5

 M

Original objective coefficient 0 M
Dual variables 1y 2y

Optimal dual values
29 290
5 5
   2 2

5 5
     M M
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Method-2 : The optimal inverse matrix, highlighted under the starting variables 4x  and R, is given as

2 1
5 5Optimal inverse
1 2
5 5

  
  
  
 

First, we note that the optimal primal variables are listed in the tableu in row order as 2x  and then 1x . This
means that the elements of the original objective coefficients for the two variables must appear in the same order
- namely,

(Original objective coefficients) = (Coefficient of 2x , coefficient of 1x )

         12, 5

TABLE Optimal Tableau of the Primal of Example

1 2 3 4

2

1

Basic Solution
3 29 2 40 0 54
5 5 5 5
1 2 1 120 1
5 5 5 5

7 1 2 261 0
5 5 5 5

x x x x R

z M

x

x

 

 

Thus, the optimal dual values are computed as

   1 2
2 1

Original objective
, Optimal inverse

coefficients of ,
y y

x x
 

  
 

              
2 1
5 512, 5
1 2
5 5

  
  

  
 

29 2,
5 5

   
 


