M.S c Mathematics – SEM 3 Functional Analysis-L-4 CC-11 Unit 1

E-content 3-Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Theorem

Let L_∞ denote the set of all bounded sequences $x=(x_i)$ of real or complex numbers. Then L_∞ is a Banach space if for $x=(x_i)$, $y=(y_i)\in l_\infty$ and scalar λ .

We define

$$x + y = (x_i + y_i), \lambda x = (\lambda x_i)$$

And $||x|| = \sup_{i \in N} |x_i|$ as the norm of x.

Proof

It is easy to see that $oldsymbol{l}_{\infty}$ is a linear space.

Also
$$||x|| > 0$$
,

$$||x|| = 0$$
, iff $sup |x_i| = 0$, iff $|x_i| = 0$

(for each i) iff $x_i = 0$ (for each i) iff x = 0 $||\lambda x|| = Sup \, |\lambda x_i|$ $= |\lambda| \, Sup |x_i|$ $= |\lambda| \, ||x||$

Again, we know

$$|x_i + y_i| \le |x| + |y| \le ||x|| + ||y||$$

So, $||x + y|| = Sup |x_i + y_i| \le ||x|| + ||y||$

Thus L^{∞} is a normed linear space.

We know the metric defined by the norm is given by

$$d(x,y) = ||x - y||$$

= $Sup |x_i - y_i| \text{ for } x, y \in L_{\infty}$

We now show that $(\boldsymbol{l}_{\infty},\boldsymbol{d})$ is a complete metric space.

Let (x^n) be a Cauchy sequences in l_{∞} .

Given $\in >0$, there exists $oldsymbol{n}_o=oldsymbol{n}_o(\in)$ in N such that

$$d(x^{(n)}, x^{(m)}) < \in for \ n, m \ge n_0(\in)$$

$$\mathsf{Let}\ x^{(n)} = (x_i^{(n)})$$

Then
$$d(x^{(n)},x^{(m)})=\sup_i|x_i^{(n)}-x^{(m)}|<\in$$
 for $n,m\geq n_0(\in)$

Hence for each fixed i,

$$|x_i^{(n)}$$
- $x^{(m)}| < \in ext{ for } n,m \geq n_0 \in \ldots$ (i)

Therefore for each fixed i, $(x_i^{(n)})$ is a Cauchy sequence of numbers and hence

$$(x_i^{(n)}) \rightarrow x_i$$
 as $n \rightarrow \infty$ e have

Now from (i) $m o \infty$

$$|x_i^{(n)}-x_i|\leq \in \text{ for } n,\geq n_0(\in)$$

and each fixed i....(ii)

$$|x_i| = |x_i - x_i^{(n)} + |x_i^{(n)}|$$

$$\leq |x_i - x_i^{(n)}| + |x_i^{(n)}|$$

$$\leq \in + \sup_{i} |x_i^{(n)}|$$

for n, $\geq n_0(\in)$by (ii)

$$=\in +||x^{(n)}||$$

Now ,
$$||x^n|| \le ||x^{(n)} - x^{(n_0)}|| + ||x^{(n_0)}||$$

$$<\in +||x^{(n_0)}|| n, \geq n_0(\in)$$

Now we choose

$$M = max \{ || x^{(1)} ||, || x^{(n_0-1)} ||,$$
 $\in +||x^{(n_0)}||$

We have $||x^{(n)}|| \leq M$ for all $n \in N$

So
$$|x_i| \leq \in +M$$

Hence
$$x = (x_i) \in l_{\infty}$$

So from inequality (ii) we have

$$d(x^{(n)}, x) = \sup_{i} |x_i^{(n)} - x_i| \le \epsilon$$

for $n \ge n_0(\in)$

Therefore , $x^n o x \in l_\infty$

Hence $(oldsymbol{l}_{\infty}, oldsymbol{d})$ is a complete metric space.

Therefore $(\boldsymbol{l}_{\infty},\boldsymbol{d})$ is a Banach space.