e-content

by

Dr ABHAY KUMAR (Guest faculty)

P.G. Department of Mathematics

Patna University, Patna

Semester-3

CC-11, Unit-4 (functional analysis)

Topic: Inner Product Spaces.

Def.(Inner Product): Let L(F) be a linear space over the field F (where F is the field of real numbers or the field of complex numbers) then a function (.) from $L \times L$ to F

is called an Inner Product on the linear space L(F) if it satisfies the following conditions

- $(1) (x,x) \ge 0$
- (2) $(x,x) = 0 \Leftrightarrow x = 0$
- (3) $(x,y) = \overline{(y,x)}$ [here $\overline{(y,x)}$ is the conjugate complex number of (y,x).

(4) (ax + by, z) = a(x, z) + b(y, z) for all $x, y, z \in L$ and $a, b \in F$

Inner Product space: A linear space L with an inner product on it is called an inner product space.

EXAMPLE: Let $R^2(R)$ be a linear space where vector addition and scalar multiplication is defined by,

If
$$x = (x_1, x_2), y = (y_1, y_2) \in R^2(R)$$
 and $a \in R$,

$$x + y = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

$$ax = a(x_1, x_2) = (ax_1, ax_2)$$

Now we defined the function (.) from $R^2(R) \times R^2(R)$ to R by

$$(x,y) = x_1 \cdot y_1 + x_2 \cdot y_2$$

then (.) is an inner product on $R^2(R)$ and hence $R^2(R)$ is an inner product Space .

Verification:
$$(x, x) = x_1 \cdot x_1 + x_2 \cdot x_2 = x_1^2 + x_2^2 \ge 0$$

 $(x, x) = 0 \Leftrightarrow x_1^2 + x_2^2 = 0$
 $\Leftrightarrow x_1 = 0 \text{ and } x_2 = 0$
 $\Leftrightarrow x = 0$

$$\overline{(y,x)} = \overline{y_1.x_1 + y_2.x_2} = y_1.x_1 + y_2.x_2$$

$$= x_1.y_1 + x_2.y_2$$

$$= (x,y)$$

$$(ax + by, z) = ((ax_1 + by_1, ax_2 + by_2), (z_1, z_2))$$

$$= (ax_1 + by_1)z_1 + (ax_2 + by_2)z_2$$

$$= a(x_1z_1) + b(y_1z_1) + a(x_2z_2) + b(y_2z_2)$$

$$= a\{(x_1z_1) + (x_2z_2)\} + b\{(y_1z_1) + (y_2z_2)\}$$

$$= a(x, z) + b(y, z)$$

Hence all the conditions of inner product are satisfied so the function (.) is an inner product on $R^2(R)$.

And hence $R^2(R)$ is an inner product space .

In general

 $\mathbb{R}^n(\mathbb{R})$ is an inner product space with respect to the inner product defined by

$$(x, y) = x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n$$

= $\sum_{i=1}^{n} x_i y_i$

THEOREM: In an inner product space E prove that

(1)
$$(ax - by, z) = a(x, z) - b(y, z)$$

$$(2) (x, ay + bz) = \overline{a}(x, y) + \overline{b}(x, z)$$

$$(3) (x, ay - bz) = \overline{a}(x, y) - \overline{b}(x, z)$$

(4)
$$(0, x) = 0$$
, $(x, 0) = 0$ for all $x \in E$

PROOF: (1) we have

$$(ax - by, z) = (ax + (-b)y, z)$$
$$= a(x, z) + (-b)(y, z)$$
$$= a(x, z) - b(y, z)$$

(2)
$$(x, ay + bz) = \overline{(ay + bz, x)}$$

$$= \overline{a(y, x) + b(z, x)}$$

$$= \overline{a(y, x) + \overline{b(z, x)}}$$

$$= \overline{a(x, y) + \overline{b}(x, z)}.$$

$$(3) (x, ay - bz) = (x, ay + (-b)z)$$

$$= \overline{a}(x, y) + \overline{(-b)}(x, z)$$

$$= \overline{a}(x, y) + \overline{(-1)b}(x, z)$$

$$= \overline{a}(x, y) + (-1)\overline{b}(x, z).$$

$$= \bar{a}(x,y) - \bar{b}(x,z) \ .$$
 (4) We have $(0.0,x) = 0.(0,x) = 0$ And $(x,0) = \overline{(0,x)} = \overline{0} = 0$

End