M.S c Mathematics -SEM 2 Functional Analysis-L-3 CC-11 Unit 1

E-content 2-Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Linear Space (Vector Space)

 for all $v_{1}, v_{2}, v_{3} \in V$
$\alpha_{1}, \alpha_{2}, \alpha_{3} \in F$ following properties
(i) (V, \oplus) is abelian group.
(ii) Distributive for scalar multiplication
$\boldsymbol{\alpha} \odot\left(\boldsymbol{V}_{\mathbf{1}} \bigoplus \boldsymbol{V}_{\mathbf{2}}\right)=\boldsymbol{\alpha} \odot \boldsymbol{V}_{\mathbf{1}} \bigoplus \boldsymbol{\alpha} \odot \boldsymbol{V}_{\mathbf{2}}$
(iii) Distributive for scalar addition
$\left(\alpha_{1}+\alpha_{2}\right) \odot V=\alpha_{1} \odot V+\alpha_{2} \odot V$
(iv) Associative for Scalar Multiplication

$$
\boldsymbol{\alpha} \odot(\boldsymbol{\beta} \odot \boldsymbol{V})=(\boldsymbol{\alpha} \bullet \boldsymbol{\beta}) \odot \boldsymbol{V}
$$

(v) $1 \cdot V=V$, Where 1 is identity element of f with respect to multiplication.

Then $(\boldsymbol{V}, \bigoplus, \odot)$ is a Vector Space over F.(linear Space)

Normed Linear Space

Let X be a linear space or vector space over field F and the function $,\|\|:. X \rightarrow R$ is defined such that
(i) $\quad||X|| \geq 0,\|X\|=0, \leftrightarrow$ (if and only if) $x=0$,$\forall x \in X$
(ii) $\quad\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in X$ (Triangular Property)
(iii) $||\alpha x||=|\alpha|| | x| |$,

Then || . \| is called norm on X.
And structure $<X, \|$. \| $>$ is called Normed Linear space.

NORM \rightarrow Length of Vector

$\overrightarrow{\boldsymbol{B A}}=$ Position of vector of a - Position Vector of B

Important Theorem

Prove that every Normed linear space is a Metric space but converse may not be true.

Proof

To prove this we know in metric space if X is a arbitrary set then X
$\mathrm{d}: \mathrm{XxX} \rightarrow \mathrm{R}$ which satisfied the following condition
(i) $d(x, y) \geq 0$
(ii) $\quad d^{\prime}(x, y)=0$ if and only if $x=y$
(iii) $d(x, y)=d(y, x)$
(iv) $d(x, y) \leq d(x, z)+d(z, y)$

Let X be a normed linear space, then
we have
$d(x, y)=\| x-y| |, \forall x, y \in X$
(i) $\quad \mathrm{d}(\mathrm{x}, \mathrm{y})=||\mathrm{x}-\mathrm{y}||, \forall x, y \in X$
(ii) $\quad \mathrm{d}(\mathrm{x}, \mathrm{y})=0$ (if and only if) , $\quad \longleftrightarrow||x-y||=0$

$$
\leftrightarrow x-y=0
$$

$\leftrightarrow x=y$
(iii) $d(x, y)=||x-y||$

$$
\begin{aligned}
& =\|\mid-(y-x)\| \\
& =|-1|\|y-x\| \\
& =\|y-x\|| |=d(y, x)
\end{aligned}
$$

(iv) $d(x, y)=\| x-y| |$

$$
\begin{aligned}
& =\|(x-z)+(z-y)\| \\
& \leq\|x-z\|+\|z-y\| \\
& \leq d(x, z)+d(z, y)
\end{aligned}
$$

that implies $d(x, y) \leq d(x, z)+d(z, y)$
Hence every normed linear space is a metric space.
Proved

Converse may not be true
e.g

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

$$
\| x-y| |=\frac{|x-y|}{1+|x-y|}, \text { put } Z=x-y \in X
$$

$||Z||=\frac{|Z|}{1+|Z|}$

$$
\begin{aligned}
\| \alpha Z| |=\frac{|\alpha Z|}{1+|\alpha Z|}=\frac{|\alpha||Z|}{1+|\alpha||Z|} & =|\alpha|\left(\frac{|Z|}{1+|\alpha||Z|}\right) \\
& \neq|\alpha| \quad|Z| \mid
\end{aligned}
$$

So , X is not normed liner space

