M.S c Mathematics – SEM 2 Functional Analysis-L-3 CC-11 Unit 1

E-content 2–Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Linear Space (Vector Space)

Let (V, \bigoplus, \odot) be an algebraic structure. then it is called a vector space over a field $(F, +, \bullet)$ if for all $\vee_1, \vee_2, \vee_3 \in \vee$

 $\alpha_1, \alpha_2, \alpha_3 \in F$ following properties

(i) (V, \oplus) is abelian group.

(ii) Distributive for scalar multiplication

- $\alpha \odot (V_1 \oplus V_2) = \alpha \odot V_1 \oplus \alpha \odot V_2$
- (iii) Distributive for scalar addition
- $(\alpha_1 + \alpha_2) \odot V = \alpha_1 \odot V + \alpha_2 \odot V$

(iv) Associative for Scalar Multiplication

 $\boldsymbol{\alpha} \odot (\boldsymbol{\beta} \odot \boldsymbol{V}) = (\boldsymbol{\alpha} \boldsymbol{\cdot} \boldsymbol{\beta}) \odot \boldsymbol{V}$

(v) $1 \cdot V = V$, Where 1 is identity element of f with respect to multiplication.

Then (V, \bigoplus, \odot) is a Vector Space over F.(linear Space)

Normed Linear Space

Let X be a linear space or vector space over field F and the function , $|| : X \rightarrow R$ is defined such that

- (i) $||X|| \ge 0$, ||X|| = 0, \leftrightarrow (if and only if) x = 0, $\forall x \in X$
- (ii) $|| x + y || \le || x || + || y ||$, $\forall x, y \in X$ (Triangular Property)
- (iii) $|| \alpha x || = |\alpha| || x ||,$

Then || . || is called norm on X. And structure $\langle X, ||$. $|| \rangle$ is called Normed Linear space.

NORM→Length of Vector

\overrightarrow{BA} = Position of vector of a – Position Vector of B

Important Theorem

Prove that every Normed linear space is a Metric space but converse may not be true.

Proof

To prove this we know in metric space if X is a arbitrary set then X

d: X x X \longrightarrow R which satisfied the following condition

- (i) d(x,y) > 0
- (ii) d(x,y)=0 if and only if x=y
- (iii) d(x,y)=d(y,x)
- (iv) $d(x,y) \leq d(x,z) + d(z,y)$

Let X be a normed linear space , then

we have

$$d(x,y) = || x - y ||, \forall x, y \in X$$
(i) $d(x, y) = || x - y ||, \forall x, y \in X$
(ii) $d(x, y) = 0$ (if and only if), $\Leftrightarrow || x - y || = 0$
 $\Leftrightarrow x - y = 0$
(iii) $d(x, y) = || x - y ||$
 $= || - (y - x) ||$
 $= |-1| || y - x ||$
 $= ||y - x|| = d(y, x)$
(iv) $d(x, y) = || x - y ||$

$$= || (x-z) + (z - y) ||$$

$$\leq || x - Z || + || z - y||$$

$$\leq d(x, z) + d(z, y)$$

that implies $d(x, y) \leq d(x, z) + d(z, y)$
Hence every normed linear space is a metric space.
Proved

Converse may not be true

e.g
$$d(x, y) = \frac{|x-y|}{1+|x-y|}$$

$$||\mathbf{x} - \mathbf{y}|| = \frac{|x-y|}{1+|x-y|}$$
, put Z = x-y $\in X$

$$|| Z || = \frac{|Z|}{1+|Z|}$$

$$|| \alpha Z || = \frac{|\alpha Z|}{1 + |\alpha Z|} = \frac{|\alpha| |Z|}{1 + |\alpha| |Z|} = |\alpha| \left(\frac{|Z|}{1 + |\alpha| |Z|}\right)$$
$$\neq |\alpha| ||Z||$$