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Topic -1
Weierstrass Approximation Theorem
Before giving this theorem we prove same facts :-

For every natural number n and x € [0,1]

We have
(@ Z Py (x) = Z ncrxr(]. —x)" =1
r=0 r=0
(ii) z P, (x) = Z r.ng x"(1—x)"" =nx
r=0 r=1

(iii) Z(nx —71)2P, (x) = nx(1 —x)
r=0

Proof (i) we have, by the binomial theorem

n

Z(; B, (x)= z ne x"(1—x)""

r=0
=kx+A-x0]"

= (D" =1.
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[n

Proof (ii) : Since r.nC e

[r.[n—r

n.[n-1

In-1
[r=1|(n-1)—(r-1)

= N.

=nn-— 1Cr—1
n n
So Zr' Pnr (x) = Zr.ncrxr(l — x)n—r
r=0 r=1

n

= z nx. n—1¢ | X" =)

r=1

n

=n xz n—1¢ | xT (1 —x)n

r=1

let r—1=S = r=1+4+S§
ifr=1 = §=0
ifr=n = S=n-1

So, from (2) we get

n n-1
z . By x) = nx. z n-— 1C5xs(1 — x)(n—l)—s
r=0 s=0

= nx. [x + (1 — x)]”_l = nx. (1)11—1

nx
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Proof (iii) Since

n

Z r.r—1) ne, x"(1—x)"7"

r=2

n

Z nn—-1) n-2; ., x(Q1—-x)"7"

r=2
[ r.(r— 1)”(,} =n(n—-1n- ZCT—Z]

n

n.(n—1x? . Z n—2¢_, x"FA—-x)""

r=2

n-2
n.(n—1x? . z n—2¢ x5(1—x)n"2-s [Takingr — 2 = s]
s=0

n(n— Dx?[x + (1 —x)]"2

nn—1) x> ()" 2% =nn - 1)x?

n
Now, z(nx —1)2P, (%)
r=0

n n n

= Z n?x?P,, (x) — 2nx z r B, (x) + z 2P, (%)
r=0 r=0 r=0
n n n n
= Z n?x?P,, (x) — 2nx Z r B, (x) + Z r(r— 1P, (x) + 2 TP, (%)
r=0 r=0 r=0 r=0

= n’x? = 2nx.nx +n(n — Dx? + nx

= n?x% — 2n%x% + n?x?% — nx?® + nx
=nx(1—x)
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Def" : Bernstein Polynomial

Let £:[0,1] — R be a function, then the polynomial = Bn(f.x) = > f[;jpnr (x)
r=0

7

wheren=1,2, ...... is called a Bernstein polynomial for f

Weierstrass Approximation Theorem:

Let £ be a continuous function defined on [a, b]. Then there exists a sequence of

polynomials which converges uniformly to f on [a, b].
Proof : We prove that theorem for the interval [0, 1]

We shall show that the Bernstein polynomial sequence {B, } is such a sequence which

converges uniformly to f on [0, 1].

We have polynomial B, (f, x) on [0, 1]
Bu(f,0 = ) f(5) P
n=0

where P (x) =n¢x"(1—x)""
Let € > 0 be given

Then ; > 0 and f is continuous on [0, 1], So it is uniformly continuous on [0, 1]
Hence for §> 0 3 6>0

suchthatx,y € [0,1]with|x —y| <d§ = |f(x) —f(Y)| < % .............. (i)
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Again f is continuous on [0,1] so it is bounded on [0,1]. Hence there exists a positive real

number M such that

lf)| <Mforallx € [0,1] .oeovevinininininntnn. )

Now foreveryn=1,2, ..... andx € [0,1] ,

HORERGEIE

F6 =) f(5) R
r=0
[from fact (i)]

Z @ -£()] P

= ZO reo-r ()

+Bar (%)

Pr+ D = £ (5) By )

= > rw-£() r

|x—1|<5 |x——|25
n

< > -Gl npw+ D r@k@+ > )R
s s s
< —+M P,(x)+M P, (x)
x—£|>6 x—1|>s

[from (1) & (2)]
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€
= E +2M Pnr (X)
|x——|26
€ _ 2
< E_|_2M z %Pnr(x) [ |x—%|26:,>(nx—1)22n262]
|x——|26

r=0
€ M
5t X (1-x) [from fact (iii)]
€ 2M 1 1
= S4+—5ong [ x(l—x)SZVxE[O,l]]
= S (3)

M

Now, Since M, €, 52 all are positive, So =5 is also positive real number. Hence by

Archimedean property of real number, there exists a positive integer m such that EM? <m

. 1 1
if n>2m = -<-—
n m

= 2n 62 2

Hence from (4) if n > m then
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|f(x) — B, (f,x)| <§+§ =€ Vx €][0,1]

Hence {B,} converges uniformly to f on [0,1]
If £ is continuous function on [a, b], then we define a function g on [0, 1] by
g&x) =flb-a)x +al, x €[0,1]

Then g is continuous on [0,1] so there exists a sequence of polynomials {B, } defined over

[0,1] such that lim,,_,., B, (g, x ) = g(x') uniformly on [0,1]

Taking (b — a)x +a = x = x € [a, b]

and lim,_ B, (g) = f(x) uniformly on [a, b]. If we define for each n
B,(x) = B, (g) we find that

lim B, () = £(x)

uniformly on [a, b]. It proves.
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