LPP (Simplex Method)

(M.Sc. Sem-III)

By : Shailendra Pandit
Guest Assistant Prof. of Mathematics
P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com
Call : 9430974625
Theorem-1 (Extreme Point Correspondence). A basic feasible solution to an L.P.P. must correspond to an extreme point of the set of all feasible solutions and conversely.

Proof. Let the L.P.P. be :
Maximize $z=c^{T} x, x \in R^{n}$ subject to the constraints :

$$
A x=b x \geq 0
$$

where \mathbf{A}, \mathbf{b} and \mathbf{c} are real $m \times n, m \times 1$ and $n \times 1$ matrices respectively. Let $\rho(A)=m$.
Let S be the set of all feasible solutions to the L.P.P. Also suppose that \mathbf{x} is a basic feasible solution

$$
x=\left[\begin{array}{c}
x_{B} \\
0
\end{array}\right]
$$

where x_{B} is an $m \times 1$ vector, such that for a non-singular sub-matrix \mathbf{B} of $\mathbf{A}, B x_{B}=b$.
If possible, let \mathbf{x} be a point of S, such that there exist $x_{1}, x_{2} \in S$ such that $x_{1} \neq x_{2}$ and

Let $\quad x_{1}=\left[\begin{array}{l}u_{1} \\ v_{1}\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}u_{2} \\ v_{2}\end{array}\right]$
where u_{1}, u_{2} are $m \times 1$ vectors and v_{1}, v_{2} are $(n-m) \times 1$ vectors. Then

$$
\left[\begin{array}{c}
x_{B} \\
0
\end{array}\right]=\lambda\left[\begin{array}{l}
u_{1} \\
v_{1}
\end{array}\right]+(1-\lambda)\left[\begin{array}{l}
u_{2} \\
v_{2}
\end{array}\right]
$$

$\therefore \quad x_{B}=\lambda u_{1}+(1-\lambda) u_{2}$
and

$$
0=\lambda v_{1}+(1-\lambda) v_{2} \quad 0<\lambda<1
$$

Since x_{1}, x_{2} are feasible solutions, therefore $u_{1}, u_{2}, v_{1}, v_{2} \geq 0$
Now

$$
0<\lambda<1 \text { and } 0=\lambda v_{1}+(1-\lambda) v_{2}
$$

\therefore We must have

$$
v_{1}=v_{2}=0
$$

Thus,

$$
x_{1}=\left[\begin{array}{c}
u_{1} \\
0
\end{array}\right], x_{2}=\left[\begin{array}{c}
u_{2} \\
0
\end{array}\right]
$$

Again, since x_{1}, x_{2} satisfy $A x_{1}=b$ and $A x_{2}=b$, therefore

$$
B u_{1}=b \text { and } B u_{2}=b .
$$

Also, since $B x_{B}=b$ and since expression of b as a linear combination of basis vectors must be unique, therefore, $u_{1}=u_{2}=x_{B}$. Hence

$$
x=x_{1}=x_{2} .
$$

This is a contradiction, for by assumption $x_{1} \neq x_{2}$.
Hence x is an extreme point of S.

Conversely. We prove that an extreme point $x^{*}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of the set of all feasible solutions is a basic feasible solution. That is, the column vectors of A associated with non-zero variables are linearly independent.

Since some components (variables) of $x *$ may be zero, without any loss of generality let us suppose that the first p components of x^{*} are positive and the remaining $(n-p)$ are zero. Then $A x^{*}=b$ implies that

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{p} a_{p}=b,
$$

where $a_{i} \in A$.
If possible, let us assume that the vectors $a_{1}, a_{2}, \ldots ., a_{p}$ are not linearly independent. Then, there must exist some scalars α_{j} not all zero, (tht is at least one $\alpha_{j} \neq 0$) such that

$$
\alpha_{1} a_{1}+\alpha_{2} a_{2}+\ldots+\alpha_{p} a_{p}=0 \text { or } \sum_{j=1}^{p} \alpha_{j} a_{j}=0 .
$$

Therefore, for some arbitrary $\varepsilon>0$, we can write
or

$$
\begin{aligned}
& \sum_{j=1}^{p} x_{j} a_{j} \pm \varepsilon \sum_{j=1}^{p} \alpha_{j} a_{j}=b . \\
& \sum_{j=1}^{p}\left(x_{j} \pm \varepsilon \alpha_{j}\right) a_{j}=b
\end{aligned}
$$

$\left(\right.$ some $\left.\alpha_{j} \neq 0\right)$
Thus, the two different points
and

$$
\begin{aligned}
& x^{(1)}=\left(x_{1}+\varepsilon \alpha_{1}, x_{2}+\varepsilon \alpha_{2}, \ldots, x_{p}+\varepsilon \alpha_{p}, 0,0, \ldots, 0\right) \\
& x^{(2)}=\left(x_{1}-\varepsilon \alpha_{1}, x_{2}-\varepsilon \alpha_{2}, \ldots, x_{p}-\varepsilon \alpha_{p}, 0,0, \ldots, 0\right)
\end{aligned}
$$

satisfy the constraints $A x^{*}=b$
Also, since $x_{j}>0$, by selecting ε such that

$$
0<\varepsilon<\min \left\{\frac{x_{j}}{\left|\alpha_{j}\right|}\right\} \quad j=1,2, \ldots, p
$$

the first p components of $x^{(1)}$ and $x^{(2)}$ will always be positive. As the remaining $(n-p)$ components in $x^{(1)}$ and $x^{(2)}$ are zero, it follows that $x^{(1)}$ and $x^{(2)}$ are feasible solutions different from x^{*}. We observe that

$$
\frac{1}{2} x^{(1)}+\frac{1}{2} x^{(2)}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x^{*} .
$$

This shows that x^{*} can be expressed as a convex combination of two distinct feasible solutions $x^{(1)}$ and $x^{(2)}$ by selecting $\lambda=\frac{1}{2}$, which contradicts the assumption that x^{*} is an extreme point.

Consequently, for x^{*} to be an extreme point, the vectors $a_{1}, a_{2}, \ldots, a_{p}$ must be linearly independent and hence x^{*} is a basic solution.

Now, since there are m equations in the system, there can be at most m linearly independent vectors in R^{m}. Therefore, if $p=m$ (a non-degenerate extreme point), then by definition, there is unique basic feasible solution corresponding to the extreme point. On the other hand, if $p<m$ degenerate extreme point), then one can select $(m-p)$ additional vectors from A with their corresponding variables equal to zero, such that the resulting set of vectors are linearly independent. This completes the proof.

Theorem-2 (Fundamental Theorem of Linear Programming). If the feasible region of an L.P.P. is a convex polyhedron, then there exists an optimal solution to the L.P.P. and at least one basic feasible solution must be optimal.

Proof. Let the L.P.P. be to determine x so as to
Maximize $z=c^{T} x$ subject to : $A x=b$ and $x \geq 0$,
where $c, x \in R^{n}$.
Then the feasible region S of the L.P.P. is given by

$$
S=\{x \mid A x=b, x \geq 0\} .
$$

Since S is a convex polyhedron, it is non-empty, closed and bounded.
The objective function $d z=c^{T} x, x \in S$ is continuous on S, which is non-empty, closed and bounded, therefore, z attains its maximum on S. This proves the existence of an optimal solution.

Now, since S is a convex polyhedron, it has finite number of extreme points. Let these be $x_{1}, x_{2}, \ldots, x_{k} \in S$. Clearly $S=<x_{1}, x_{2}, \ldots, x_{k}>$. Therefore, any $x \in S$ can be expressed as a convex combination of the extreme points, say

$$
x=\sum_{j=1}^{k} \alpha_{j} x_{j} ; \alpha_{j} \geq 0, \sum \alpha_{j}=1 \text { for all } j=1,2, \ldots, k
$$

Let

$$
\begin{aligned}
& z_{0}=\max \cdot\left\{c^{T} x_{j} j=1,2, \ldots, k\right\} . \text { Then for any } x \in S, \\
& z=c^{T} x=c^{T}\left(\Sigma \alpha_{j} x_{j}\right)=\Sigma \alpha_{j}\left(c^{T} x_{j}\right) \leq \Sigma \alpha_{j} z_{0}=z_{0}
\end{aligned}
$$

$\therefore \quad z \leq z_{0}$ for any $x \in S$.
Thus, the maximum value of z is attained only at one of the extreme points of S. That is, at least one extreme point of S yields an optimal solution.

Now, since each extreme point of S corresponds to a basic feasible solution of the L.P.P. therefore, at least one basic feasible solution is optimal. This completes the proof.

Theorem-3 (Conditions of Optimality). A sufficient condition for a basic feasible solution to an L.P.P. to be an optimum (maximum) is that $z_{j}-c_{j} \geq 0$ for all j for which the column vector $a_{j} \in A$ is not in the basic. B.

Proof. Let the L.P.P. be to determine x so as to
Maximize $z=c x ; c, x^{T} \in R^{n}$ subject to the constraints :

$$
A x=b \text { and } x \geq 0
$$

where A and b are $m \times n$ and $m \times 1$ real matrices respectively. Let $\rho(A)=m$ so that we can choose an submatrix B of A as a basic matrix.

Let us assume that there exists a basic feasible solution x_{B} to this L.P.P. Let c_{B} be the cost vector corresponding to the basic variables.

Then

$$
B x_{B}=b, x_{B} \geq 0 \text { and } z_{0}=c_{B} x_{B}
$$

Now, for all those j for which $a_{j} \notin B$, we are given that $z_{j}-c_{j} \geq 0$.
Let $a_{j}=b_{j}$ for all such j for which $a_{j} \in B$. Then
and

$$
y_{j}=B^{-1} b_{j}=e_{j} \text {, the unit vector } \quad\left(\text { since } y_{j}=B^{-1} a_{j}\right)
$$

$$
z_{j}-c_{j}=c_{B} y_{j}-c_{j}=c_{B} c_{j}-c_{j}
$$

$$
=c_{B j}-c_{j}=0 \quad\left(\text { since } a_{j} \in B, c_{B j}=0\right)
$$

Thus, $z_{j}-c_{j} \geq 0$ for all j for which $a_{j} \in A$.

Now, let x be a feasible solution. Then
or $\sum_{j=1}^{n} z_{j} x_{j} \geq \sum_{j=1}^{n} c_{j} x_{j} \quad$ or $\quad \sum_{j=1}^{n} c_{B} y_{j} x_{j} \geq \sum_{j=1}^{n} c_{j} x_{j} \quad\left(\right.$ since $\left.z_{j}=c_{B} y_{j}\right)$
or

$$
\sum_{i=1}^{m} c_{B i} \sum_{j=1}^{n} y_{i j} x_{j} \geq \sum_{j=1}^{n} c_{j} x_{j}
$$

$$
\left(\text { since } c_{B} y_{j}=\sum_{i=1}^{m} c_{B} y_{j}\right)
$$

for all j for which $a_{j} \notin B$.
Now, since

$$
\begin{aligned}
& x_{B}=B^{-1}(A x)=\left(B^{-1} A\right) x=Y x \\
& x_{B i}=\sum_{j=1}^{n} y_{i j} x_{j} \quad i=1,2, \ldots, m
\end{aligned}
$$

or
therefore, the above inequation can be written as

$$
\sum_{i=1}^{m} c_{B i} x_{B i} \geq \sum_{j=1}^{n} c_{j} x_{j} \text { or } c_{B} x_{B} \geq c x \text { or } z_{0} \geq z^{*}
$$

where z^{*} is the value of the objective function for the feasible solution x.
Hence, z_{0} is an optimum for that basic feasible solutions for which $z_{j}-c_{j}>0$ for all j such that $a_{j} \notin B$.

