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Theorem-1 (Extreme Point Correspondence). A basic feasible solution to an L.P.P. must correspond to
an extreme point of the set of all feasible solutions and conversely.

Proof. Let the L.P.P. be :
Maximize , T nz c x x R  subject to the constraints :

                    0 Ax b x

where A, b and c are real , 1 m n m  and 1n  matrices respectively. Let   . A m
Let S be the set of all feasible solutions to the L.P.P. Also suppose that x is a basic feasible solution
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where Bx  is an 1m  vector, such that for a non-singular sub-matrix B of A, .BBx b

If possible, let x be a point of S, such that there exist 1 2, x x S  such that 1 2x x  and

 1 21 0 1      x x x
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where 1 2,u u  are 1m  vectors and 1 2,v v  are   1 n m  vectors. ThenThen
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  1 21    Bx u u

and  1 20 1   v v 0 1.  

Since 1 2,x x  are feasible solutions, therefore 1 2 1 2, , , 0u u v v

Now 0 1    and  1 20 1   v v

  We must have 1 2 0 v v

Thus,
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Again, since 1 2,x x  satisfy 1 Ax b  and 2 ,Ax b  therefore

1 2and Bu b Bu b .

Also, since BBx b  and since expression of b as a linear combination of basis vectors must be unique,

therefore, 1 2 .  Bu u x  Hence

1 2. x x x

This is a contradiction, for by assumption 1 2.x x
Hence x is an extreme point of S.
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Conversely. We prove that an extreme point  1 2* , , ...., nx x x x  of the set of all feasible solutions is a
basic feasible solution. That is, the column vectors of A associated with non-zero variables are linearly indepen-
dent.

Since some components (variables) of x* may be zero, without any loss of generality let us suppose that

the first p components of x* are positive and the remaining  n p  are zero. Then *Ax b  implies that

1 1 2 2 ... ,   p px a x a x a b

where .ia A

If possible, let us assume that the vectors 1 2, , ...., pa a a  are not linearly independent. Then, there must

exist some scalars  j  not all zero, (tht is at least one 0 j ) such that

1 1 2 2 ... 0     p pa a a  or 
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0
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j j
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a .

Therefore, for some arbitrary 0,   we can write

1 1
.
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p p

j j j j
j j

x a a b

or              
1

  
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j j j
j

x a b  some 0 j

Thus, the two different points
   1

1 1 2 2, , ..., , 0, 0, ..., 0      p px x x x

and    2
1 1 2 2, , ..., , 0, 0, ..., 0      p px x x x

satisfy the constraints *Ax b
Also, since 0,jx  by selecting   such that

0 min 1, 2, ...,
      
  

j

j
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the first p components of  1x  and  2x  will always be positive. As the remaining  n p  components in
 1x  and  2x  are zero, it follows that  1x  and  2x  are feasible solutions different from x*. We observe that

     1 2
1 2

1 1 , , ..., *.
2 2

  nx x x x x x

This shows that x* can be expressed as a convex combination of two distinct feasible solutions  1x  and

 2x  by selecting 
1 ,
2

   which contradicts the assumption that x* is an extreme point.

Consequently, for x* to be an extreme point, the vectors 1 2, , ..., pa a a  must be linearly independent and
hence x* is a basic solution.

Now, since there are m equations in the system, there can be at most m linearly independent vectors in .mR
Therefore, if p m  (a non-degenerate extreme point), then by definition, there is unique basic feasible solution
corresponding to the extreme point. On the other hand, if p m     degenerate extreme point), then one can

select  m p  additional vectors from A with their corresponding variables equal to zero, such that the resulting
set of vectors are linearly independent. This completes the proof.
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Theorem-2 (Fundamental Theorem of Linear Programming). If the feasible region of an L.P.P. is a
convex polyhedron, then there exists an optimal solution to the L.P.P. and at least one basic feasible solution
must be optimal.

Proof. Let the L.P.P. be to determine x so as to
Maximize  Tz c x  subject to : Ax b  and 0x ,

where , . nc x R
Then the feasible region S of the L.P.P. is given by

 | , 0  S x Ax b x .
Since S is a convex polyhedron, it is non-empty, closed and bounded.
The objective function , Tdz c x x S  is continuous on S, which is non-empty, closed and bounded,

therefore, z attains its maximum on S. This proves the existence of an optimal solution.
Now, since S is a convex polyhedron, it has finite number of extreme points. Let these be 1 2, , ..., .kx x x S

Clearly 1 2, , ..., . kS x x x  Therefore, any x S  can be expressed as a convex combination of the extreme
points, say

1
; 0, 1


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k

j j j j
j

x x   for all 1, 2, ...,j k

Let  0 max . 1, 2, ..., . T
jz c x j k  Then for any ,x S

    0 0       T T T
j j j j jz c x c x c x z z

 0z z    for any .x S
Thus, the maximum value of z is attained only at one of the extreme points of S. That is, at least one

extreme point of S yields an optimal solution.
Now, since each extreme point of S corresponds to a basic feasible solution of the L.P.P. therefore, at least

one basic feasible solution is optimal. This completes the proof.
Theorem-3 (Conditions of Optimality). A sufficient condition for a basic feasible solution to an L.P.P. to

be an optimum (maximum) is that 0 j jz c  for all j for which the column vector ja A  is not in the basic. B.
Proof. Let the L.P.P. be to determine x so as to

                 Maximize ; , T nz cx c x R  subject to the constraints :

     and 0 Ax b x

where A and b are m n  and 1m  real matrices respectively. Let   A m  so that we can choose an  sub-
matrix B of A as a basic matrix.

Let us assume that there exists a basic feasible solution Bx  to this L.P.P. Let Bc  be the cost vector corre-
sponding to the basic variables.

Then 0, 0 and  B B B BBx b x z c x

Now, for all those j for which ,ja B  we are given that 0 j jz c .

Let j ja b  for all such j for which .ja B  Then
1 , j j jy B b e  the unit vector (since 1j jy B a )

and     j j B j j B j jz c c y c c c c

    0  Bj jc c (since , 0 j Bja B c )

Thus, 0 j jz c  for all j for which .ja A
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Now, let x be a feasible solution. Then
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n n n n

j j j j B j j j j
j j j j

z x c x or c y x c x (since j B jz c y )

or
1 1 1

,
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i j j
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c y c y )

for all j for which .ja B

Now, since    1 1   Bx B Ax B A x Yx

or
1

1, 2, ...,


 
n

Bi ij j
j

x y x i m

therefore, the above inequation can be written as

0
1 1

*
 

   
m n

Bi Bi j j B B
i j

c x c x or c x cx or z z

where z* is the value of the objective function for the feasible solution x.
Hence, 0z  is an optimum for that basic feasible solutions for which 0 j jz c  for all j such that

.ja B


