e-content

Ву

Dr ABHAY KUMAR (Guest Faculty)

P.G.Department of Mathematics

Patna University, Patna

SEMESTER-2, CC-09 (Topology)

Topic: The Tietze Extension Theorem

Theorem(The Tietze Extension Theorem):

Any bounded continuous real function on a closed subset F of a normal space X can be extended continuously to the whole space X preserving the same bounds.

Proof:Let f be a bounded continuous function on the closed subset F of X .Then there exists a real number k>0 such that $|f(x)|\leq k$ for all $x\in F$

Now consider the subsets F_1 and F_2 of F defined by

$$F_1 = \left\{ x \in F : f(x) \le \frac{-k}{3} \right\} = f^{-1} \left[-k, \frac{-k}{3} \right]$$
and $F_2 = \left\{ x \in F : f(x) \ge \frac{k}{3} \right\} = f^{-1} \left[\frac{k}{3}, k \right]$

Then F_1 and F_2 are disjoint, non-empty and closed set in F

Since *f* is continuous and since *F* is closed so

$$f^{-1}\left[-k,\frac{-k}{3}\right]$$
 and $f^{-1}\left[\frac{k}{3},k\right]$

i.e F_1 and F_2 are also closed in X. Since X is normal

so there exists a continuous function

$$g_1: X \to \left[\frac{-k}{3}, \frac{k}{3}\right]$$
 such that

$$g_1(F_1) = \left\{\frac{-k}{3}\right\}$$
 and $g_2(F_2) = \left\{\frac{k}{3}\right\}$

Now we define a function

$$h_1$$
 on F by $h_1(x) = f(x) - g_1(x)$

 $since f \ and \ g_1 \ are \ continuous \ so \ h_1 \ is \ also \ continuous$

$$|a_{\text{again}}|h_1(x)| \le \frac{2}{3}k \ if \ x \in F_{1,} then - k \le f(x) \le \frac{-k}{3} \ g_1(x) = \frac{-k}{3}$$

Hence
$$\frac{-2}{3}k \le f(x) - g_1(x) \le 0$$

$$_{\text{i.e}} \frac{-2}{3} k \le h_1(x) \le 0 \le \frac{2}{3} k.$$

if
$$x \in F_2$$
, then $\frac{k}{3} \le f(x) \le k$ and $g_1(x) = \frac{k}{3}$

$$\frac{-2}{3}k \le f(x) - g_1(x) \le 0$$

$$\frac{k}{3} - \frac{k}{3} \le f(x) - g_1(x) \le k - \frac{k}{3}$$

$$0 \le f(x) - g_1(x) \le \frac{2k}{3}$$

$$_{\text{i.e}} 0 \le h_1(x) \le \frac{2k}{3} \text{ finaly if } x \in F$$

but
$$x \notin F_2 \cup F_2$$

Then
$$\frac{-k}{3} < f(x) < \frac{k}{3}$$
 and $\frac{-k}{3} \le g_1(x) \le \frac{k}{3}$

So that
$$\frac{-k}{3} - \frac{k}{3} < f(x) - g_1(x) < \frac{k}{3} - (\frac{-k}{3})$$

$$\frac{-2k}{3} < f(x) - g_1(x) = h_1(x) < \frac{2k}{3}$$
 So $|h_1(x)| \le \frac{2k}{3}$

Applying the above procedur to $h_1(x)$ with bounds $\frac{-2k}{3}$ and $\frac{2k}{3}$ a continuous function $g_2(x)$ Is obtained on the whole space X with $|g_2(x)| \leq \frac{1}{3} \cdot \frac{2}{3} k$ and a continuous function $h_2(x) = h_1(x) - g_2(x)$ is defined on $F(h_2(x)) \leq (2/3)^2 k$. In general

, we obtain for each positive integer n, a continuous

function
$$g_n(x)$$
 on X with $|g_n(x)| \le \frac{1}{3} (2/3)^{n-1} k$

and a continuous function $h_n(x) = h_{n-1}(x) - g_n(x)$ on F with $|h_n(x)| \le (2/3)^n k$ So by Weierstrass M – test

The series $\sum_{n=1}^{\infty} g_n(x)$ of continuous functions converges uniformly

On X and so defined a continuous function $f_0(x)$ on X

with
$$|f_0(x)| \le \frac{1}{3} \sum_{0}^{\infty} (2/3)^n k = k$$
.

Also on F we have $f_o(x) = g_1(x) + \sum_{n=1}^{\infty} g_{n+1}(x)$

$$= f(x) - h_1(x) + \sum_{n=1}^{\infty} \{h_1(x) - h_{n+1}(x)\}$$
$$= \lim_{n \to \infty} \{f(x) - h_{n+1}(x)\}$$

Since
$$|h_{n+1}(x)| \le (2/3)^{n+1} k$$
 and $\lim_{n \to \infty} \{h_{n+1}(x) = 0\}$

Hence $f_0(x) = f(x) on F$. Thus there exists a continuous function $f_0(x)$ on X which is an extension of the given continuous function bounded function f(x)

on F and f_0 has the same bounds .It proves.