LPP (Simplex Method) (M.Sc. Sem-III) By : Shailendra Pandit Guest Assistant Prof. of Mathematics P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com Call : 9430974625

Definition (Basic Solution) : Given a system of *m* simultaneous linear equations in *n* unknowns (m < n)

 $Ax = b, x^T \in \mathbb{R}^n,$

Where A is an $m \times n$ matrix of rank m. Let B be any $m \times n$ submatrix, formed by m linearly independent columns of A. Then, a solution obtained by setting n-m variables not associated with the columns of B, equal to zero, and solving the resulting system, is called a **basic solution** to the given system of equations.

The *m* variables, which may be all different from zero, are called **basic variables**. The $m \times m$ non-singular sub-matrix *B* is called a **basic matrix** with the columns of *B* as **basic vectors**.

Remarks : The name basic solution, as used above, merits a word of caution. If B is the basis sub-matrix chosen, then the basic solution to the system is

$$x_{R} = B^{-1}b.$$

But $x_B^T \in \mathbb{R}^m$, and as such cannot be called a solution of the given system. Truly speaking, if x_B is a basic solution, then a solution to the given system is $[x_B^T, 0]$ where $x_B^T \in \mathbb{R}^m$, and $0 \in \mathbb{R}^{n-m}$. However, we shall follow the current usage and call x_B a basic solution of the given system, remembering all the time that the actual solution is $[x_B^T, 0]$.

Definition (Degenerate solution). A basic solution to the system is called **degenerate** if one or more of the basic variables vanish.

SAMPLE PROBLEMS

1. Obtain all the basic solutions to the following system of linear equation :

$$x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + x_2 + 5x_3 = 5.$$

Sol. The given system of equations can be written in the matrix form as Ax = b, where

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 5 \end{pmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ and } b = \begin{bmatrix} 4 \\ 5 \end{bmatrix}.$$

Since, rank of A is 2, the maximum number of linearly independent columns of A is 2. Thus, we can take any of the following, 2×2 sub-matrices as basic matrix B :

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 5 \end{pmatrix} \text{ and } \begin{pmatrix} 2 & 1 \\ 1 & 5 \end{pmatrix}$$

The variables not associated with the columns of *B* are x_3 , x_2 and x_1 respectively, in the three different cases.

Let us first take $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$. A basic solution to the given system is now obtained by setting $x_3 = 0$, and solving the system.

$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

Thus, a basic (non-basic) solution to the given system is :

$$(Basic) x_1 = 2, x_2 = 1;$$
 (Non-basic) $x_3 = 0$

Similarly, the other two basic and non-basic solutions are :

(Basic)
$$x_1 = 5, x_2 = -1;$$
 (Non-basic) $x_2 = 0$

and

and
$$(Basic)x_2 = 5/3, x_3 = 2/3;$$

We observe that all the above three basic solutions are non-degenerate.

Show that the following system of linear equations has a degenerate solution : 2.

$$2x_1 + x_2 - x_3 = 2$$
$$3x_1 + 2x_2 + x_3 = 3$$

Sol. The given system of equations can be written as Ax = b, where

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 2 & 1 \end{pmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ and } b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Since rank of A is 2, the maximum number of linearly independent columns of A is 2. Thus, we can take any of the following 2×2 sub-matrices of A, as basic matrix B :

$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
, $\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$

The variables not associated with the columns of these sub-matrices are, respectively, x_3 , x_1 and x_2 .

Considering $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$, a basic solution to the given system is obtained by setting $x_3 = 0$ and solving the

system

$$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

Thus, basic solution to the given problem is

$$(Basic) x_1 = 1, x_2 = 0;$$
 (Non-basic) $x_3 = 0$

Similarly, the other two solutions are :

(Basic)
$$x_2 = 5/3, x_3 = -1/3;$$
 (Non-basic) $x_1 = 0$.

and

:

in each of the two basic solutions, at least one of the basic variables is zero. Hence, two of the basic solutions are degenerate solutions.

Definition (Basic feasible solution). A feasible solution to an L.P.P., which is also a basis solution to the problem is called a **basic feasible solution** to the L.P.P.

Illustrations

In sample problem 1 observe that [5, 0, -1] is not a feasible solution. Only basic feasible solutions are 1.

(i)
$$x_2 = 5/3$$
 and $x_3 = 2/3$; (ii) $x_1 = 2$ and $x_2 = 1$

 $(Basic) x_1 = 1, x_3 = 0$

(Non-basic) $x_2 = 0$

(Non-basic) $x_1 = 0$

2. In sample problem 2, the non-degenerate solution [0, 5/3, -1/3] is not feasible. Only basic feasible degenerate solutions are :

(i) $x_1 = 1$ and $x_2 = 0$ (ii) $x_1 = 1$ and $x_3 = 0$.

Definition (Associated cost vector). Let x_B be a basic feasible solution to the L.P.P. :

Maximize z = cx subject to : Ax = b and $x \ge 0$

Then, the vector

$$c_{B} = (c_{B1}, c_{B2}, ..., c_{Bm})$$

where c_{B1} are components of *c* associated with the basic variables, is called the **cost vector associated** with the basic feasible solution x_{B} .

It is obvious that the value of the objective function for the basic feasible solution x_B , is given by

$$z_0 = c_B x_B$$

Definition (Improved basic feasible solution). Let x_B and \hat{x}_B be two feasible solutions to the standard

L.P.P. Then \hat{x}_B is said to be an improved basic feasible solution, as compared to x_B , if

$$c_B x_B \geq c_B x_B$$

where \hat{c}_B is constituted of cost components corresponding to $\hat{\chi}_B$,

Definition (Optimum basic feasible solution). A basic feasible solution x_B to the L.P.P. :

Maximize z = cx subject to : Ax = b and $x \ge 0$

is called an **optimum basic feasible solution** if $z_0 = c_B x_B \ge z^*$ where z^* is the value of objective function for any feasible solution.

PROBLEMS

3. Find all the basic feasible solutions of the equations

$$2x_1 + 6x_2 + 2x_3 + x_4 = 3$$

$$6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$$