M.S c Mathematics -SEM 2 Functional Analysis CC-11 Unit 1

E-content 5-By Dr Abhik Singh, Guest faculty, PG Department of Mathematics, Patna University, Patna

Linear Space

Let S be a set : It will be called a space and its elements will be called point or vectors and will usually be denoted by f, g, h, etc Linear space : S is termed a linear space (or vector space) if
(a)An operation called addition and denoted by + is defined in S ,which assigns to every two vectors f, g of S,a vector $f+g$ of S ,called the sum of f and g, satisfying the following properties : for any vector f, g, h,of S.
(i) $f+g=g+f($ commutative)
(ii) $(f+g)+h=f+(g+h)($ associative)
(iii) the equation $g+x=f$ hs at least one solution x in S
(b) A certain scalar system either the complex number system or the real number system (the elements of the scalar system
being called scalars), an operation called multiplication by a scalar is defined, i. e to every scalar a and every vector f, a vector af called the scalar multiple of f by a, satisfying the following properties : for any scalars a, b, c and any vectors f, g, h
(i)a(bf)=(ab)f (associative with respect to scalar, multiplication to scalar)
(ii) a $(\mathrm{f}+\mathrm{g})=\mathrm{af}+\mathrm{ag}$ (distributivity of scalar multiplication over addition of vectors)
(iii)1f=f (property of multiplication by unity)

The linear space is called a complex linear space or a real linear space according as the prescribed scalar system is the complex number system or the real number system.

1. Linear dependence : n vectors $\boldsymbol{f}_{\mathbf{1}}, \boldsymbol{f}_{\mathbf{2}}, \ldots \ldots . . . \boldsymbol{f}_{\boldsymbol{n}}$,are said to be linearly dependent if some one of them say $\boldsymbol{f}_{\boldsymbol{k}}$, can be expressed in terms of the remaining ones in the form

$$
f_{k}=a_{1} f_{1}+a_{2} f_{2}+\cdots \cdots \cdots+a_{n} f_{n}
$$

2. Linear Combination : For Vectors $f_{1} f_{2}, \ldots f_{n}$,any vector of the form
$c_{1} f_{1}+c_{2} f_{2}+\cdots \cdots \cdots \cdots+c_{n} f_{n}{ }^{\text {is termed a }}$ linear combination of $\boldsymbol{f}_{\mathbf{1}}, \boldsymbol{f}_{\mathbf{2}}, \ldots \cdots \cdots \cdots \boldsymbol{f}_{\boldsymbol{n}}{ }^{\text {(i.e a }}$ combination obtained by applying addition and multiplication by scalars which are the operations prescribed in the definition of linear spaces.

3 .Linear Independence : The negative counterpart of linear dependence is called linear independence of vectors $\boldsymbol{f}_{\mathbf{1}}, \boldsymbol{f}_{\mathbf{2}}, \ldots \ldots \ldots . \boldsymbol{f}_{\boldsymbol{n}}$, which is said to hold if none of these vectors can be expressed as a linear combination of the others, the relation
$c_{1} f_{1}+c_{2} f_{2}+\cdots \cdots \cdots \cdots+c_{n} f_{n}=0$ can hold only for the case

$$
\boldsymbol{c}_{1}=\boldsymbol{c}_{2}=\cdots \cdots \cdots \cdots \cdots \cdots \boldsymbol{c}_{n}
$$

This means that if vectors $\boldsymbol{f}_{\mathbf{1}}, \boldsymbol{f}_{\mathbf{2}}, \ldots \ldots \ldots . . \boldsymbol{f}_{\boldsymbol{n}}$ are linearly independent and if scalars vectors

$$
\begin{aligned}
& \boldsymbol{b}_{\boldsymbol{1}}{ }^{\prime} \boldsymbol{b}_{\boldsymbol{2}}, \ldots \ldots \boldsymbol{b}_{\boldsymbol{n}} \text { are chosen such that all of } \boldsymbol{b}_{\boldsymbol{i}}{ }^{\prime \text { s }} \\
& \text { are not zero, then }
\end{aligned}
$$

$b_{1} f_{1}+b_{2} f_{2}+\cdots \cdots \cdots \cdots+b_{n} f_{n} \neq 0$

Linear Manifold

Let M be a subset of the linear space S. It is of interest to know whether M itself is a linear space with the same operations as in S. Thus in case of threedimensional vector space ,every plane or straight line passing through the origin is itself a vector space ,but the same cannot be said of arbitrary sets, such as spheres or cubes in the space, as the sum of two vectors taken from the set may fall outside the set. Linear manifold (or subspace) :

A subset M of a linear space is called linear manifold(or a subspace) if
(i) it contains all the sums of all the vectors contained in it i.e if f and g are in M then so is $f+g$, and
(ii) it contains all the scalar multiples of all its vectors, i.e if f is in M then so is af for any scalar a.

Both (i) and (ii) can be combined into a single conditions by saying that if f and g are in M, then so is $\mathbf{a} \mathbf{f}+\mathbf{b} \mathbf{g}$,for any scalars \mathbf{a}, \mathbf{b}

