Fredhlom integral equation

Binod Kumar*
M.Sc. Mathematics Semester: II
PaperVII (MAT CC-07)
Patna University, Patna

July 29, 2020

Solution of Fredhlom integral equation by iterative method.
Theorem 1. Consider Fredhlom integral equation of the second kind.

$$
\begin{equation*}
y(x)=f(x)+\lambda \int_{a}^{b} K(x, t) y(t) d t \tag{1}
\end{equation*}
$$

Proof. As azero -order approximation to the required solution $y(x)$, let us take

$$
\begin{equation*}
y_{0}(x)=f(x) \tag{2}
\end{equation*}
$$

further, if $y_{n}(x)$ and y_{n-1} are the $n t h$ order and $(n-1) t h$ order approximations respectively, then these are connected by

$$
\begin{equation*}
y_{n}(x)=f(x)+\lambda \int_{a}^{b} K(x, t) y_{n-1}(t) d t \tag{3}
\end{equation*}
$$

We know that the iterated kernels (or iterated function) $k_{n}(x, t),(n=1,2,3, \ldots$ are defined by

$$
\begin{align*}
& K_{1}(x, t)=K(x, t), \tag{4a}\\
& k_{n}(x, t)=\int_{a}^{b} K(x, z) k_{n-1}(z, t) d z \tag{4b}
\end{align*}
$$

and
putting $n=1$ in equation (3), the first-order approximation y_{1} is given by

$$
\begin{equation*}
y_{1}(x)=f(x)+\lambda \int_{a}^{b} K(x, t) y_{0}(t) d t \tag{5}
\end{equation*}
$$

[^0]But from equation (2

$$
\begin{equation*}
y_{0}(t)=f(t) \tag{6}
\end{equation*}
$$

From equations (5) and (6), we get

$$
\begin{equation*}
y_{1}(x)=f(x)+\lambda \int_{a}^{b} K(x, t) f(t) d t \tag{7}
\end{equation*}
$$

putting $n=2$ in equation (3), the second-order approximation y_{2} is given by

$$
\begin{align*}
& y_{2}(x)=f(x)+\lambda \int_{a}^{b} K(x, t) y_{1}(t) d t \tag{8a}\\
& y_{2}(x)=f(x)+\lambda \int_{a}^{b} K(x, z) y_{1}(z) d z \tag{8b}
\end{align*}
$$

Replacing x by z in equation (5), we get

$$
\begin{equation*}
y_{1}(z)=f(z)+\lambda \int_{a}^{b} K(z, t) f(t) d t \tag{9}
\end{equation*}
$$

From equations (8a) and (9), we have

$$
\begin{align*}
& y_{2}(x)=f(x)+\lambda \int_{a}^{b} K(x, z)\left[f(z)+\lambda \int_{a}^{b} K(z, t) f(t) d t\right] d t \\
& y_{2}(x)=f(x)+\lambda \int_{a}^{b} K(x, z) f(z) d z+\lambda^{2} \int_{a}^{b} K(x, z)\left[\int_{a}^{b} K(z, t) f(t) d t\right] d z \tag{10a}
\end{align*}
$$

On changing the order of the integration in third term on R.H.S. of equation (10a)

$$
\begin{equation*}
y_{2}(x)=f(x)+\lambda \int_{a}^{b} K(x, z) f(z) d z+\lambda^{2} \int_{a}^{b} f(t)\left[\int_{a}^{b} K(x, z) K(z, t) d z\right] d t \tag{11}
\end{equation*}
$$

or

$$
\begin{gather*}
y_{2}(x)=f(x)+\lambda \int_{a}^{b} K_{1}(x, t) f(t) d t+\lambda^{2} \int_{a}^{b} K_{2}(x, t) f(t) d t \tag{12}\\
y_{2}(x)=f(x)+\sum_{m=1}^{m=2} \lambda^{m} \int_{a}^{b} K_{m}(x, t) f(t) d t \tag{13}
\end{gather*}
$$

proceeding likewise, we easily obtain by Mathematical induction the $n^{t h}$ order approximation solution $y_{n}(x)$ of equation (1) as

$$
\begin{equation*}
y_{n}(x)=f(x)+\sum_{m=1}^{m=n} \lambda^{m} \int_{a}^{b} K_{m}(x, t) f(t) d t \tag{14}
\end{equation*}
$$

Taking limitt both side as $n \rightarrow \infty$

$$
\begin{equation*}
y(x)=\lim _{n \rightarrow \infty} y_{n}(x)=f(x)+\sum_{m=1}^{\infty} \lambda^{m} \int_{a}^{b} K_{m}(x, t) f(t) d t \tag{15}
\end{equation*}
$$

We now determine the resolvent kernal(reciprocal kernal) $R(x, t ; \lambda)$ in the terms of the iterated kernals $k_{m}(x, t)$. For this equation (14) is uniformly convergent.

$$
\begin{equation*}
y(x)=\lim _{n \rightarrow \infty} y_{n}(x)=f(x)+\int_{a}^{b}\left[\sum_{m=1}^{\infty} \lambda^{m} K_{m}(x, t)\right] f(t) d t \tag{16}
\end{equation*}
$$

comparing equation (17) with

$$
\begin{equation*}
y(x)=f(x)+\lambda \int_{a}^{b} R(x, t: \lambda) f(t) d t \tag{17}
\end{equation*}
$$

Here

$$
R(x, t: \lambda)=\sum_{m=1}^{\infty} \lambda^{m} K_{m}(x, t)
$$

Determination of the conditions of convergence

Consider the partial sum equation (14) and apply the Schwarz inequality

$$
\begin{equation*}
\left|\int_{a}^{b} K_{m}(x, t) f(t) d t\right|^{2} \leq\left(\int_{a}^{b}\left|K_{m}(x, t) f(t) d t\right|^{2}\right) \int_{a}^{b}|f(t)|^{2} d t \tag{18}
\end{equation*}
$$

Let

$$
\begin{equation*}
D=\text { norm of } f(t)=\left[\int_{a}^{b}|f(t)|^{2} d t\right]^{\frac{1}{2}} \tag{19}
\end{equation*}
$$

Further, let C_{m}^{2} denotes the upper bound of the integral

$$
\int_{a}^{b}\left|K_{m}(x, t) f(t) d t\right|^{2}
$$

so that,

$$
\begin{equation*}
\int_{a}^{b}\left|K_{m}(x, t) f(t) d t\right|^{2} \leq C_{m}^{2} \tag{20}
\end{equation*}
$$

Using equations (20) and (19), (18) reduces to

$$
\begin{equation*}
\left|\int_{a}^{b} K_{m}(x, t) f(t) d t\right|^{2} \leq C_{m}^{2} D^{2} \tag{21}
\end{equation*}
$$

now, applying Swartz inequality to relation

$$
K_{m}(x, t)=\int_{a}^{b} K_{m-1}(x, z) K(z, t) d z
$$

We get

$$
\left|K_{m}(x, t)\right|^{2} \leq\left(\left.\int_{a}^{b} K_{m-1}(x, z)\right|^{2} d z\right) \times\left(\left.\int_{a}^{b} K(z, t)\right|^{2} d z\right)
$$

which when integrated with respect to t, gives

$$
\begin{equation*}
\int_{a}^{b}\left|K_{m}(x, t)\right|^{2} \leq B^{2} C_{m-1}^{2} \tag{22}
\end{equation*}
$$

Where

$$
\begin{equation*}
B^{2}=\int_{a}^{b} \int_{a}^{b}\left|K_{m}(x, t)\right|^{2} d x d t \tag{23}
\end{equation*}
$$

The inequality (22) gives rise to the recurrence relation

$$
\begin{equation*}
C_{m}^{2} \leq B^{2 m-2} C_{1}^{2} \tag{24}
\end{equation*}
$$

Using equations (21) and (24), we get

$$
\begin{equation*}
\left|\int_{a}^{b} K_{m}(x, t) f(t) d t\right|^{2} \leq C_{m}^{2} D^{2} B^{2 m-2} \tag{25}
\end{equation*}
$$

showing that the general term of the partial sum (14) has a magnitude less than the quantity $D C_{1}|\lambda|^{m} B^{m-1}$. Hence the infinite series (15) converges faster than the geometric series with command ratio $|\lambda| B$. It follows that, if the condition

$$
\begin{equation*}
|\lambda| \leq \frac{1}{\sqrt{\int_{a}^{b} \int_{a}^{b}|K(x, t)|^{2} d x d t}} \tag{26}
\end{equation*}
$$

is satisfied. Then the series (16) is uniformly convegent. Uniqueness of solution for a given λ
If possible, let equation(1) possess two solutions $y_{1}(x)$ and $y_{2}(x)$. Then we have

$$
\begin{array}{r}
y_{1}(x)=f(x)+\lambda \int_{a}^{b} K(x, t) y_{1}(t) d t \\
y_{2}(x)=f(x)+\lambda \int_{a}^{b} K(x, t) y_{2}(t) d t \\
y_{1}(x)-y_{2}(x)=\phi(x) \tag{29}
\end{array}
$$

Substracting equation (28) from (27), we have

$$
\begin{equation*}
y_{1}(x)-y_{2}(x)=\int_{a}^{b} K(x, t)\left(y_{1}(t)-y_{2}(t)\right) d t=\phi(x) \tag{30}
\end{equation*}
$$

which is homogeneous integral equation. Applying the Schwarz inequality to equation (30), we have

$$
\begin{equation*}
|\phi(x)|^{2} \leq|\lambda|^{2}\left(\int_{a}^{b}|K(x, t)|^{2} d t\right) \times\left(\int_{a}^{b}|\phi(t)|^{2} d t\right) \tag{31}
\end{equation*}
$$

integrating with respect to x

$$
\begin{aligned}
& \int_{a}^{b}|\phi(x)|^{2} d x \leq|\lambda|^{2}\left(\int_{a}^{b} \int_{a}^{b}|K(x, t)|^{2} d x d t\right) \times\left(\int_{a}^{b}|\phi(x)|^{2} d x\right) \\
& \text { or, } \int_{a}^{b}|\phi(x)|^{2} d x \leq \lambda^{2} B^{2} \int_{a}^{b}|\phi(x)|^{2} d x \\
& \Longrightarrow \quad\left(1-|\lambda|^{2} B^{2}\right) \int_{a}^{b}|\phi(x)|^{2} d x \leq 0 \\
& \therefore \quad \phi(x)=0 \\
& \quad y_{1}(x)=y_{2}(x)
\end{aligned}
$$

[^0]: *Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

