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Evaluation of real definite integration by Cantour Integration

ch(z) dz = 2m’(Sum of residues of f(z) at the pole within C)
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Solution : Let £ = .[o 5+4cosO
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Polesare: z+2 =0 z=_2

— No. of poles of f'(z) lies inside the circle C.
= [f(z)dz=0
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(2) Do yourself (using Contour Integration)

Evaluate : | —2
(2) Evaluate: |, 5+4cos0
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(b) Evaluate : .[o 5140050

** Evaluation of J. gEx; dx

Where f(x) & g(x) are polynomials in x.
The given integral can be reduced to contour integrals. if

(i) g(x) has no real root.

(i) The degree of f(x)> degree of g(x) by at least two.

ie. deg(f(x)) —deg(g(x)) >2
Steps involved :

f(x)
g(x)

Consider _[C h(z)dz

Let #(x)=

Where C is a curve; consisting of upper half C, of the circle |z| = R and part of real axis from —R to
+R.

If there are no poles of f (z) on the real line, the circle |z| = R which is arbitrary can be taken such that
there is no singularity on its.
Circumference C, in the upper half of the plane, but possibly some poles inside the contour C specified

above.
Using Cauchy’s residue theorem

We have _[C f(z)dz=2mi ZResidues
ie., I_RRf(x)dx+IC f(z)dz =2mi(Sum of residue in C)

N I_RRf(x) dx = —ICR f(z)dz +2mi (Sum of residues within C)

tim [* f (x)dx=—1lim [ f (2)dz+2m Y R

Now lim [ f(z)dz = f(Re”)Ric"d0 =0

Hence Jif(x) dx =2 (Sum of residues in C)



