Complex Integration (M.Sc.)

By : Dr. L.N. Rai
Prof. \& Head of P.G. Dept. of Mathematics
Patna University, Patna
Email : loknathrai7@gmail.com
Call :

Evaluation of real definite integration by Cantour Integration

$$
\int_{C} f(z) d z=2 \pi i(\text { Sum of residues of } f(z) \text { at the pole within } C)
$$

use $\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{1}{2 i}\left[z-\frac{1}{z}\right]$

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{1}{2}\left[z+\frac{1}{z}\right]
$$

where $z=r e^{i \theta}$ and $|z|=r$
if $z=e^{i \theta} \Rightarrow d z=e^{i \theta} i d \theta$
$\Rightarrow d \theta=\frac{d z}{i z}$
Evaluate :
(i) $\int_{0}^{\pi} \frac{1+2 \cos \theta}{5+4 \cos \theta} d \theta$

Solution : Let $I=\int_{0}^{\pi} \frac{1+2 \cos \theta}{5+4 \cos \theta} d \theta$

$$
=\text { Real part }\left[\frac{1}{2} \int_{0}^{2 \pi} \frac{1+2 e^{i \theta}}{5+4 \cos \theta} d \theta\right]
$$

$=$ Real part $\left[\frac{1}{2} \int_{0}^{2 \pi} \frac{1+2 e^{i \theta}}{5+2\left(e^{i \theta}+e^{-i \theta}\right)}\right] d \theta$
$=$ putting $e^{i \theta}=z \quad$ get $d \theta=\frac{d z}{i z}$
$I=$ Real part $\left[\frac{1}{2} \int_{C} \frac{1+2 z}{5+2\left(z+z^{-1}\right)} \frac{d z}{i z}\right]$
$=$ Real part of $\left[\frac{1}{2} \int \frac{-i(2 z+1)}{(2 z+1)(z+2)} d z\right]$
$=$ Real part of $\left[-\frac{1}{2} \int \frac{1}{z+2} d z\right]$
Poles are : $z+2=0 \quad z=-2$
\Rightarrow No. of poles of $f(z)$ lies inside the circle C.
$\Rightarrow \int f(z) d z=0$
$\Rightarrow I=$ Real part $\left[0+i_{0}\right] \quad I=0$
(2) Do yourself (using Contour Integration)
(a) Evaluate : $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$

Ans. $\frac{\pi}{6}$
(b) Evaluate : $\int_{0}^{\infty} \frac{\cos 3 \theta}{5+4 \cos \theta} d \theta$
** Evaluation of $\int_{-\infty}^{\infty} \frac{f(x)}{g(x)} d x$
Where $f(x) \& g(x)$ are polynomials in x.
The given integral can be reduced to contour integrals. if
(i) $g(x)$ has no real root.
(ii) The degree of $f(x)>$ degree of $g(x)$ by at least two.
i.e. $\operatorname{deg}(f(x))-\operatorname{deg}(g(x)) \geq 2$

Steps involved :

Let $h(x)=\frac{f(x)}{g(x)}$
Consider $\int_{C} h(z) d z$
Where C is a curve; consisting of upper half C_{R} of the circle $|z|=R$ and part of real axis from-R to +R .
If there are no poles of $f(z)$ on the real line, the circle $|z|=R$ which is arbitrary can be taken such that there is no singularity on its.
Circumference C_{R} in the upper half of the plane, but possibly some poles inside the contour C specified above.
Using Cauchy's residue theorem
We have $\int_{C} f(z) d z=2 \pi i \sum$ Residues
i.e., $\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(z) d z=2 \pi i$ (Sum of residue in C)
$\Rightarrow \int_{-R}^{R} f(x) d x=-\int_{C_{R}} f(z) d z+2 \pi i($ Sum of residues within $C)$
$\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=-\lim _{R \rightarrow \infty} \int f(z) d z+2 \pi i \sum R$
Now $\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=\int_{0}^{\pi} f\left(\operatorname{Re}^{i \theta}\right) R i e^{i \theta} d \theta=0$
Hence $\int_{-\infty}^{\infty} f(x) d x=2 \pi i($ Sum of residues in C$)$

