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Theorem 1 (Osgood Uniqueness theorem) Let f(z,y) be a continuous function on S = {(m,y) €
R? : ‘x—xol <a, and ‘y—yo‘ < b}. If V (z,51), (z,y2)€ S such that

@) = Fla)| < (@) - (@)) &

where w(z) is the same as the Lemma (7). The IVP y/'(z), y(zo) =yo has at most one solution in
S
First proof lemma (?7?) then arises two condition according as x € [z¢ — a, %o+ a]
Case (i) Let y1(x) and ya(z) be two solution of the given IVP
y'(x), ylwo)=yo, in zo<z<zo+a (2)
We have

y1(w) = yo + /f(t,yl(t))dt

and

ya() = o + / £t ya(0))dt

~Jn@ = @) = | / F(ty(8)dt - / Ft.ya(t))d

< / [£t00) = 71,0000

< [w(|n® - woto)] )

Zo
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Now, let u(z) = |y1(z) — y2 (m)‘ then u(z) satisfies the condition in the lemma (?7).

ulz)=0 V $€|:$0,£L’0+ai|

Case (ii) Again to prove the theorem (1) V z € {xo —a, xo].
we need to prove that

u(@) = [y (w0 — @) — yalao — ) 3)

Let u(x) be s non-negative continuous function in ‘m - xo’ < asuch that u(xzg) =0 wu'(xg)=0

(u(z) is differentiable), then the inequality

u(x)g‘/ztu_(tx)odt‘
=  u(z)=0 Voxe{xo—a,xo +a}

Let

then from statement

and the integral given by equation (4) exists.
Differentiating w.r.t. x of equation (4) under Leibnitz’s rule,

hence

v'(z) o)
- T — X (x—a:o)ng

. d(M)SO

dr \x — xg

Since z>z9 = v(z) < v(xo)

= o(z) is monotonic decreasing at xg



Now,

. u(x
lim
T—To T — T

= u'(z0)

Since wu(z) >0

o) = MBS
z — o
v(z) >0 (6)
From equations (5) and (6)
v(z) =0 (7)

From equations (4) and (7)

/Mdt = u(z)=0 V z¢€ xo—a,x—O—l—a}
t—(EO

Zo

Hence proved

Theorem 2 (Nagumo uniqueness theorem) Let f(z,y) be a continuous function on S = {(:I:,y)

RZ:‘x—x()’ <a, and ’y—yo‘ <b and V (x,y1), (w,yg)eg} such that

1) — fa)| < Klr 0] |n@) — (o) )

where K <1, x#x . Then the IVP y'(2) = f(x,y), wy(x0) =yo has at most one solution in S

Let y1(x) and ya(z) be two solution of the given IVP

Since [y () — ()| = | / Flt.a(0)dt - / 1t ya(0)dt]
/\f (£91(0)) = F(tys(6)) |t

‘y1 —y2 ’
<K‘/ ‘dt

t—l‘o

= ‘yl( —ya(x <K’/y1 ‘dt
t— 7o

’yl(x) ‘/yl t—xo ‘dt

If we have u(z) = |y1(z) — y2 (x)’ then we have



u(zg) =0 and u'(z9) =0

u(w) < | / ult) |

t—{L‘O

is also satisfied
u(z) =0 V ‘x —xo‘

we set u(x) = |y1(z) — ya2(x)

= wu(x) is non-negative and continuous V ‘x — q:()’ and u(zg) =0 ie., y1(zo) = y2(x0)

u(xo + h) — u(xo)

v (z) = lim

h—0 h
‘yl(iﬂo +h) —ya(zo + h)’ - ‘yl(xo) - y2($0)’
= lim
h—0 h
2 (w0) + hyj (2 + O) — ya(aw0) — by o + 6h)|
= lim
h—0 h

(by Taylor’s expansion)

1] |91 w0 + 61) = yh (o + 01)|
= lim
h—0 h
N e I R T / o
= lim == lim |2/} (2o + 0h) yg(xo+9h)’

W(z)=0
so all the three conditions of lemma are satisfied, then u(z) =0 Vz in ’ac — 330‘ <a
= |ni(z) - y2($)’ =0 Vv ’x - xo‘ <a

Hence proved



