Measure Theory (M.Sc. Sem-II) By : Shailendra Pandit Guest Assistant Prof. of Mathematics P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com Call : 9430974625

1. The cantor ternary set :

Let us consider the interval I = [0, 1]Now remove

$$I_{1,1} = \left(\frac{1}{3}, \frac{2}{3}\right)$$

from I when we get as residual

residual are : $J_{1,1} = \left[0, \frac{1}{3}\right] \& J_{1,2} = \left[\frac{2}{3}, 1\right]$

again remove

$$I_{2,1} = \left(\frac{1}{9}, \frac{2}{9}\right) \& I_{2,2} = \left(\frac{7}{9}, \frac{8}{9}\right)$$

from residuals $J_{1,1}$ and $J_{1,2}$

then we have
$$\left[0, \frac{1}{9}\right], \left[\frac{2}{9}, \frac{1}{3}\right], \left[\frac{2}{3}, \frac{7}{9}\right]$$
 and $\left[\frac{8}{9}, 1\right]$

As residuals

On continuining this process we arrive at the residual closed intervals at nth stage.

$$J_{n,1}$$
 $J_{n,2^n}$ each of length $\frac{1}{3^n}$ the open interval (removed).

 $I_{n,r}$ also being of length $\frac{1}{3^n}$, if we write $P_n = \bigcup_{k=1}^{2^n} J_{n,k}$ then,

 $P = \bigcap_{n \ge 1} P_n$ is defined as Cantor ternary set.

Note :- The cantor ternary set is uncountable. How

If possible we suppose the set P (Cantor ternary set) is countable and

Let $x^{(1)}$, $x^{(2)}$, be the enumeration of P

But are known the element in P is as of the form $x = 0 \cdot x_1 x_2 \dots$ with

$$x_n \in \{0, 2\}$$

If $x_n^{(n)} = 0$ let $x_n = 2$; if $x_n^{(n)} = 2$ Let $x_n = 0$, then $x = 0 \cdot x_1 x_2 \dots$ differ from each $x^{(n)}$ but $x \in P$ so no enumeration is possible.

 \Rightarrow P is uncountable.

(2) The Lebegue function

Let $J_{n,k}$ and $I_{n,k}$ are defined as in cantor set P.

and L_n is monotone increasing on $[0, 1] \forall n \in N$

Which is linear and increased by $\frac{1}{2^n}$ with

 $L_n(0) = 0, \qquad L_n(1) = 1 \qquad \& \quad L_n(x) = \text{const. } \forall x \in I_{n,k}$ $\implies n > m$

we have $\left|L_{n(x)} - L_m(x)\right| < \frac{1}{2^m} \implies \{L_n \text{ is cauchy's sequence}\}$

then the function $L(n) = \lim_{n \to \infty} L_n(x)$

is defined as lebegue function

MEASURE ON REAL LINE

Alert : All the sets over which we are going to define a measure are subset of real line \mathbb{R} We will be concerned particularly with interval I of the form I = [a, b] where a & b are finite.

If
$$a = b \implies I = \phi$$
 (Empty set)

Definition : The lebegue outer measure of a set A is given by

 $m^*(A) = \inf \sum \ell(I_n)$ where

Infimum is taken over all finite or countable collections of intervals $\{I_n\}$ such that $A \subseteq \bigcup_{n \ge 1} I_n$ or another may we can say

 $\bigcup I_n$ is countable covering of A

Properties :-

- (i) $m^*(A) \ge 0 \quad \forall A \subseteq \mathbb{R}$
- (ii) $m^*(\phi) = 0$

(iii)
$$m^*(A) \le m^*(B) \forall A \subseteq B$$

(iv) $m\{x\} = 0$ for all $x \in R$

Proof : (i) By the definition (i), (ii) and (iii) are obvious. for (iv) Let $x \in I_n$

where $I_n = \left[x, x + \frac{1}{n}\right] \forall n$

and $\ell(I_n) = \frac{1}{n}$

$$m^* \{x\} = \inf \sum_{n \ge 1} \frac{1}{n} = 0 \qquad \text{as } n \to \infty$$
$$\boxed{m^* \{x\} = 0}$$