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TOPIC-4
THE FOUR DERIVATES
Definition :— (i) If /is an extended real valued finite at x and defined in a open interval containing x,
then the following four quantities : not necessarily finite are called respectively the upper right derivate
the lower derivate, the upper left derivate and lower left derivate

f(x+h)—f(x)

D' f(x)= lim sup ; upper right derivate

h
h)—
D, f(x)=liminf f(x+h) f(x); lower right derivate
h—0 h

AN
D" f(x)=limsup f(x=h) f(x); upper left derivate

h—0 —h
S(x=h)=/(x)
—h
Note: D' f(x)2D,f(x) & D" f(x)2D_f(x)

the function f'is differentiable at x if and only if the four derivates have a finite common value which

D_f(x)= %i_r)r(}inf : lower left derivate

we then write as usual f '(x)

Example (1) : Let f(x)=|x| find D*, D,, D~ & D_ and prove that {'is not differentiable.

Solution :— D f(0)= %i_r}gsupw = %| =1
D+f(0):1iminff(h)_f(0):|h|_0—1
h—0 h h
D™ f(0)=limsup f(#)=1(0) = 1A =-1
h—0 —h h
D_f(0)=-1
Thus we have D" =D, =1 & D =D =-1

= f'(O) does not exist.

Example (2) : Evaluate four derivatives of f (x) at xy =0 where f (x) is given by
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.1 1
asin’ —+bxcos’— ; x>0
X x
f(x)= 0 ; x=0
| . ) 1
a'xsin“—+b'xcos"— ; x<0
X X

where a<b, a'<b'

N . .21 1
Solution :— We have D*f(0)= llmSup[a sin’ Zbcosz Z} =b

h—0

h—0

D, f(0)= liminf[a sin2%+bcos2 ﬂ =a

D™ f(0) =limsup S(=h)=7(0)

h—0 -h

- lmysup 5

—p'

D,f(O) = liminfw

h—0 -h

[a' (—h)sin’ 1 —b'hcos” 1}
h h

=1lim
h—0 —h

:a'

xsin (—j; x#0
Assignment : Evaluate the four derivates of ./ (X) = X

at x=0
Assignment (2) show that if f'(x) exists then D” (f+g)(x) = f'(x)+D+g(x)
Assignment (3) Give an example where D*(f+g)#D"f+D'g
FUNCTION OF BOUNDED VARIATION
Let f'is defined & finite valued on finite interval [a, b] let P[a, b]={a =x,<x,<x,, ....x, =b} be a

n

partition of [a, b]

Put PZiZ:(f(xl)—f(xm)Y’ n= (f(xi)_f(xi—l))

k
-

1

& t:p"'n:Z‘f(xi)_f(xH)

2



where o =max (o, 0), o~ =max(-a, 0)
sot, p,n>0and f(b)-f(a)=p-n
Also put

T,[a, b]=supt= Supi‘f(xi)_f(xifl )‘

Vp =l

where supremum is taken over all partitions of [a, b]
Now function f over [a, b] is said to be function of bbd variation iff T, [a, b] <o
Also, we will use p=sup p, N =supn, T =sup ¢
defined as positive, negative and total variations, of f on [a, b]
A function is said to belongs to BV [a, b] if [a, b] <o
Theorem (1) Let /'€ BV [a, b] then f(b)—f(a)=P—N and T =P+ N all variations being on the
finite interval [a, b]
Proof : for any partition f(b) —f(a) =p—n

= p:n+f(b)—f(a)£N+f(b)—f(a)

on taking supremum
p<N+f(b)-f(a)

similarly : n=p+ f(a)—f(b)
gives N< f(a)—f(b)+P

But P-N< f(b)-f(a)SP-N

= |f(b)-f(a)=P-N| proved.

Also TZp+n:2p—f(b)+f(a):2p+N—P
on taking supremum
=T>2P+Nbutt=n+p<N+P

similarly 7< N + P
BN

Theorem (2) if g <c <p then T, [a, b] =T, [a, c] +7, [c, b]

Proof : Consider any partition of [a, b] and [a, b]=T,[a, b]

Add the point ¢ to the Q partition, then ¢ increases to ;' say, and
t[a, b]<1'[a, c]+1'[c. b] <T[a, ]+ T e, b]

So we have T[a, b]<[a, ¢]+T[c, b]

Now take any partition of [a, ¢| and [c, b]



gives t[a, c] and t[c, b] these partition gives a partition of [a, b] and we see that
t[a, c]+t[c, b]<T[a, b] on taking supremum over all such pairs of

partitions gives T [a, c¢]+T[c, b]<T|[a, b]

= T[a, c]+T[c, b]zT[a, b]

Theorem (3) (Decomposition theorem for function of bbd variation)
A function f € B V[a, b] iff f'is the difference of two finite valued montone increasing functions on
[a, b] where a and b finite.
Proof : Suppose that f'is of bbd variation,
put g(x) =Py [a, x]+f(a) and h(x) =N, [a, x]
then g and 4 are montone increasing functions and 0< p, [a, x]<T,[a, x]<T,[a, b] so g and simi-
larly 4 is finite.
But f=g—h on[a, b]

Conversly :
Let f'=g—h where g and 4 are finite valued montone increasing functions then for any partition

a=xy, <X, <Xy, ceuee. <x,=b we have

D1 G) =S < (e () -g () +25(h(x)=h(x ) <g(b)-g(a)+h(b)-h(a)
So T,[a,b]<wx
— f'is of bbd variation on [a, &]
Assignment (1) prove that BV [a, b] is a vector space :

Assignment (2) prove that f(x) on [0, 1] defined by

B sin (Ej; x>0
! (x) B * is not function of bbd variation.
0 ; x=0
. T
. xsin—; x>0 i
Assignment (3) show that g(x) on [0,1] defined by g(x) { x is continuous but
0 : x=0

ge BV [0, 1]
Assignment (4) prove that a function f of bounded derivative on [a, b] is a function of bbd variation

where f' is continuous on [a, b].



LEBESGUE’S DIFFERENTIATION THEOREM
Theorem (1) : Let G be a finite collection of intervals [l K] then there exist a sub-collection G, of disjoint
1
intervals of G G, = [lki] say such that m(U[ki ) > Em(U[k)
Proof : Let I, € G be an interval of maximal length. Remove from G any interval meeting /; The

measure of the union of these intervals (including /) is not greater than 3/ (I K, ) as [ (1 X, ) 1s maximal.
This leaves a smaller. Class G, from which /i is similarly chosen and the measure of the union of the
intervals meeting /, is not greater than 3l(1 K) etc. continue until G is exhausted to get intervals

Iy, Iy , ... Iy which are disjoint from the construction. Every interval of G meets. Some I so

m(Ulk)£z3l(1Kl):3m(QlKl]

W | —

g

Theorem (2) : If [la] is collection of open intervals such that m(U Ia) <o there exists a finite sub-

collection /,, 1,, ...... I, of there intervals such that

m(Ut) 2 m(UL)
Proof : By Lindelof theorem

We may choose a countable sub-collection [/, | of the [/, ] with the same union.

limm(U IK] =m(|J1,) <
K=1
So n exist with the desired property.

d)—
Note : If ¢ <4 and fis any function then f (c, d ) stands to ratio %
Theorem (3) Let n(x) be a linear on [a, b], n(a)<n(b). Let ¢ be a polygon with same end points as ©

of which 7 sides the total length of whose projections on the x-axis is d, have a slope less than —&; (& > 0)

thene(q)>z(n)+d( (1+g2)_1)_
Proof : Starting with ¢ ... replace adjacent sides, where necessary, by moving them parallel to themselves

until, after a finite number of steps, there is obtained a new polygon ¢, with sides congruent to those of g
and whose first n sides have slope <—& . As each replacement leaves length unchanged l(q) =/ (ql).

Clearly g, (a, a +d) <-€.



In aside figure;

7 (b)

7 (a)

q,(a+d) -

\4

B is the point (a +d, n(a));

Cis the point (a+d, ¢, (a++d)),
Now AC = 4B

sec < BAC > AB\1+§’

So [(n)=AD< AB+BD < AB+CD < AB+CD+ AC — AB\1+ €’

But 4B=d and CD+AC<I(q,)=1(q)

So E(n)<€(q)—d(@—l)

Corollary : If 7t and g are defined as above (Theorem-3) but with nt(a)>n(b) and with 7 sides of g

having a slope greater than nt(a)>7(b) then the sum conclusion holds.

Proof : To prove it replace © by —n, ¢ by —¢ and apply the theorem (3).
Theorem (4) (Lebesque’s Differentiation of Theorem) :

If fe BV[a, b] where a and b are finite, then we have (i) f is differentiable a.e. (i) the derivative is
finite a.e.

Proof : (i) It is sufficient to show D' f <D f a.e.since —f € BV [a, b]
We have D, f>D f ae.thisgives D" f>D f>D f>D f>D"f and equality holds a.e.
We suppose that D" f > D_f

on a set of positive measure and obtain a contradiction.
— fis continuous. a.e.
— the derivates are measurable.

Also there exists ¢>( and aset F [a, b] with m(F)>0 and such that D* f —D_f >2¢ on F but

x:D'f-D f>2e{=Uix:D" f(x)>r+D f(x)<r,—¢
(x) (x)



where {rh} is an enumeration of the rationals.
So at least one set of this union has positive measure. We can therefore find number ¢, 4 with ¢ > (
and a set £ in [a, b] with m(E)>0 and on which fis continuous.
Such that D' f>n+g,
D f<n—-gon E
Now f—nxeBV|[a,b] and D*(f—nx)>D_(f—nx)
Ifand only if D"/ >D_f

So we may suppose that 5 =(
Let © be any polygon drawn as in theorem (3) to approximate f/ and let p be the set of points of the

corresponding partition of [a, b] let x e E— P and suppose that 7'(x) <0.

D' f (x) > ¢ there exists > x suchthat f (x, bx) > ¢ then as f'is continuous at x and hence f (x, [3)
is continuous function of x we can find @, < x such that f'(a,, b,)>¢ and clearly we may choose a, and
b, so that 7 is linear on (a,, b,).

Similarly, if 7'(x)>0 we use that fact D_f <—¢ and choose an interval (a, —b,) on which 7 is linear

and f(a,,b )<-¢

then Ula,. b,)2E-P so by theorem (2)

there exists a finite collection of these intervals say 1, I, .... I, such that

m(glk]>%m(U(ax,bx)jzém(E—P):%m(E)

X

By theorem (1)
We may extract a subcollection of disjoint intervals

Iy, ... Iy from these, such that

By theorem (3)
To each interval on which r is linear and adding we get

/(q) >€(n)+§€([,<i)(M—l)>f(n)+ém(E)(M—l)

But & is independent of 7t so

Since / (n) can always be increased by a constant amount. Supl(n) =oo taking the supermum over all

poygon w approximating /: Hence f ¢ B V[a, b] and get contradiction.

= (1) f1s differentiable a.e.
Now,

(1) Suppose this result is false, then replacing f by — f* if necessary we may suppose that there exists a set



E on which fis continuous, E c[a, b] m(E)>0 and D*f = on E. Then for any A/ >0 choose. As (i)

a collection of intervals [(a,, b,)] covering £ such that f(a,,b,)>M choose the disjoint intervals

- 1 . . .
Iy, .....d ¢ as before such that Z 4 (1 K, ) > s m (E ) Let g be the polygon, approximating f, determined by

k=1

the end-points of the intervals /. the length of ¢ in the interval /. is greater than £ (I K, )\/1 +M?* since

L e |
the slope of f'is greater than M. So 5(‘])>Z£([Ki) 1+ M* >gm(E) 1+M°
i=1

But M is arbitrary and £ is independent of M so taking the supermum over all approximating polygons 7

we get sup / (n) =oo and (ii) proved.



