MEASURE THEORY : (M.Sc. Sem-II) By : Shailednra Pandit Guest Assistant Prof. of Mathematics P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com Call : 9430974625

TOPIC-4 THE FOUR DERIVATES

Definition :– (i) If f is an extended real valued finite at x and defined in a open interval containing x, then the following four quantities : not necessarily finite are called respectively the upper right derivate the lower derivate, the upper left derivate and lower left derivate

$$D^{+}f(x) = \limsup_{h \to 0} \frac{f(x+h) - f(x)}{h}; \text{ upper right derivate}$$
$$D_{+}f(x) = \liminf_{h \to 0} \frac{f(x+h) - f(x)}{h}; \text{ lower right derivate}$$
$$D^{-}f(x) = \limsup_{h \to 0} \frac{f(x-h) - f(x)}{-h}; \text{ upper left derivate}$$
$$D_{-}f(x) = \liminf_{h \to 0} \frac{f(x-h) - f(x)}{-h}; \text{ lower left derivate}$$

Note : $D^+f(x) \ge D_+f(x) \& D^-f(x) \ge D_-f(x)$

the function f is differentiable at x if and only if the four derivates have a finite common value which we then write as usual f'(x)

Example (1) : Let f(x) = |x| find D^+ , D_+ , D^- & D_- and prove that f is not differentiable.

Solution :-

$$D^{+}f(0) = \limsup_{h \to 0} \sup \frac{f(h) - f(0)}{h} = \frac{|h|}{h} = 1$$

$$D_{+}f(0) = \liminf_{h \to 0} \inf \frac{f(h) - f(0)}{h} = \frac{|h| - 0}{h} = 1$$

$$D^{-}f(0) = \limsup_{h \to 0} \sup \frac{f(h) - f(0)}{-h} = \frac{-|h|}{h} = -1$$

$$D_{-}f(0) = -1$$
Thus are here, D⁺ = D = 1 = -2

Thus we have $D^+ = D_+ = 1$ & $D^- = D_- = -1$ $\Rightarrow f'(0)$ does not exist.

Example (2) : Evaluate four derivatives of f(x) at x=0 where f(x) is given by

$$f(x) = \begin{cases} a\sin^2\frac{1}{x} + bx\cos^2\frac{1}{x} & ; \quad x > 0\\ 0 & ; \quad x = 0\\ a'x\sin^2\frac{1}{x} + b'x\cos^2\frac{1}{x} & ; \quad x < 0 \end{cases}$$

where a < b, a' < b'

Solution :- We have

$$D^{+}f(0) = \limsup_{h \to 0} \sup \left[a \sin^{2} \frac{1}{h} b \cos^{2} \frac{1}{h} \right] = b$$

$$D^{-}_{+}f(0) = \limsup_{h \to 0} \inf \left[a \sin^{2} \frac{1}{h} + b \cos^{2} \frac{1}{h} \right] = a$$

$$D^{-}f(0) = \limsup_{h \to 0} \sup \frac{f(-h) - f(0)}{-h}$$

$$= \lim_{h \to 0} \sup \frac{\left[a'(-h) \sin^{2} \frac{1}{h} - b' h \cos^{2} \frac{1}{h} \right]}{-h}$$

$$= b'$$

$$D_{-}f(0) = \liminf_{h \to 0} \frac{f(-h) - f(0)}{-h}$$

$$= \lim_{h \to 0} \frac{\left[a^{1}(-h) \sin^{2} \frac{1}{h} - b' h \cos^{2} \frac{1}{h} \right]}{-h}$$

$$= a'$$

Assignment : Evaluate the four derivates of $f(x) = \begin{cases} x \sin(\frac{1}{x}); & x \neq 0 \\ 0 & ; & x = 0 \end{cases}$

at x = 0

Assignment (2) show that if f'(x) exists then $D^+(f+g)(x) = f'(x) + D^+g(x)$

Assignment (3) Give an example where $D^+(f+g) \neq D^+f + D^+g$

FUNCTION OF BOUNDED VARIATION

Let *f* is defined & finite valued on finite interval [a, b] let $P[a, b] = \{a = x_0 < x_1, < x_2, \dots, x_n = b\}$ be a partition of [a, b]

Put
$$p = \sum_{i=1}^{k} (f(x_i) - f(x_{i-1}))^+$$
, $n = \sum_{i=1}^{k} (f(x_i) - f(x_{i-1}))^-$
& $t = p + n = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$,

where $\alpha^+ = \max(\alpha, 0), \alpha^- = \max(-\alpha, 0)$ so $t, p, n \ge 0$ and f(b) - f(a) = p - nAlso put

$$T_{f}[a, b] = \sup t = \sup_{\forall p} \sum_{i=1}^{k} |f(x_{i}) - f(x_{i-1})|$$

where supremum is taken over all partitions of [a, b]

Now function f over [a, b] is said to be function of bbd variation iff $T_f[a, b] < \infty$

Also, we will use $p = \sup p$, $N = \sup n$, $T = \sup t$

defined as positive, negative and total variations, of f on [a, b]

A function is said to belongs to BV[a, b] if $[a, b] < \infty$

Theorem (1) Let $f \in BV[a, b]$ then f(b) - f(a) = P - N and T = P + N all variations being on the finite interval [a, b]

Proof: for any partition f(b) - f(a) = p - n

$$\Rightarrow p = n + f(b) - f(a) \le N + f(b) - f(a)$$

on taking supremum

 $p \le N + f(b) - f(a)$

similarly: n = p + f(a) - f(b)

gives
$$N \leq f(a) - f(b) + P$$

But $P-N \le f(b) - f(a) \le P-N$

$$\Rightarrow f(b) - f(a) = P - N \text{ proved.}$$

Also $T \ge p + n = 2p - f(b) + f(a) = 2p + N - P$ on taking supremum $\Rightarrow T \ge P + N$ but $t = n + p \le N + P$ similarly $T \le N + P$

$$\Rightarrow T = P + N$$

Theorem (2) if a < c < b then $T_f[a, b] = T_f[a, c] + T_f[c, b]$

Proof : Consider any partition of [a, b] and $t[a, b] = T_f[a, b]$ Add the point *c* to the *Q* partition, then *t* increases to *t*' say, and

 $t[a, b] \le t'[a, c] + t'[c, b] \le T[a, c] + T[c, b]$ So we have $T[a, b] \le [a, c] + T[c, b]$

Now take any partition of [a, c] and [c, b]

gives t[a, c] and t[c, b] these partition gives a partition of [a, b] and we see that $t[a, c]+t[c, b] \le T[a, b]$ on taking supremum over all such pairs of partitions gives $T[a, c]+T[c, b] \le T[a, b]$

$$\Rightarrow \overline{T[a,c]} + \overline{T[c,b]} = \overline{T[a,b]}$$

Theorem (3) (Decomposition theorem for function of bbd variation)

A function $f \in BV[a, b]$ iff f is the difference of two finite valued montone increasing functions on

[a, b] where a and b finite.

Proof: Suppose that *f* is of bbd variation,

put
$$g(x) = p_f[a, x] + f(a)$$
 and $h(x) = N_f[a, x]$

then g and h are montone increasing functions and $0 \le p_f[a, x] \le T_f[a, x] \le T_f[a, b]$ so g and similarly h is finite.

But f = g - h on [a, b]

Conversly :

Let f = g - h where g and h are finite valued montone increasing functions then for any partition

 $a = x_0 < x_1 < x_2, \dots < x_n = b$ we have

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \le \sum_{i=1}^{n} (g(x_i) - g(x_{i-1})) + \sum_{i=1}^{n} (h(x_i) - h(x_{i-1})) \le g(b) - g(a) + h(b) - h(a)$$

So
$$T_f[a, b] < \infty$$

 \Rightarrow *f* is of bbd variation on [*a*, *b*]

Assignment (1) prove that BV[a, b] is a vector space :

Assignment (2) prove that f(x) on [0, 1] defined by

$$f(x) = \begin{cases} \sin\left(\frac{\pi}{x}\right); & x > 0\\ 0 & ; & x = 0 \end{cases}$$
 is not function of bbd variation.

Assignment (3) show that g(x) on [0,1] defined by $g(x) = \begin{cases} x \sin \frac{\pi}{x}; & x > 0 \\ 0 & \vdots & x = 0 \end{cases}$ is continuous but

 $g \notin BV[0, 1]$

Assignment (4) prove that a function f of bounded derivative on [a, b] is a function of bbd variation where f' is continuous on [a, b].

LEBESGUE'S DIFFERENTIATION THEOREM

Theorem (1) : Let G be a finite collection of intervals $[I_K]$ then there exist a sub-collection G_0 of disjoint

intervals of G_i , $G_0 = [I_{k_i}]$ say such that $m(\bigcup I_{k_i}) \ge \frac{1}{3}m(\bigcup I_k)$

Proof: Let $I_{K_1} \in G$ be an interval of maximal length. Remove from G any interval meeting I_{K_1} The measure of the union of these intervals (including I_k) is not greater than $3l(I_{K_1})$ as $l(I_{K_1})$ is maximal. This leaves a smaller. Class G_1 from which I_{K_2} is similarly chosen and the measure of the union of the intervals meeting I_{K_2} is not greater than $3l(I_K)$ etc. continue until G is exhausted to get intervals $I_{K_1}, I_{K_2}, \dots, I_{K_n}$ which are disjoint from the construction. Every interval of G meets. Some I_{K_i} so

$$m\left(\bigcup I_{k}\right) \leq \sum 3l\left(I_{K_{i}}\right) = 3m\left(\bigcup_{i=1}^{n} I_{K_{i}}\right)$$
$$m\left(\bigcup_{i=1}^{n} I_{K_{i}}\right) \geq \frac{1}{3}m\left(\bigcup I_{K}\right)$$

Theorem (2) : If $[I_{\alpha}]$ is collection of open intervals such that $m(\bigcup I_{\alpha}) < \infty$ there exists a finite subcollection I_1, I_2, \dots, I_n of there intervals such that

$$m\bigl(\bigcup I_K\bigr) \ge \frac{1}{2}m\bigl(\bigcup I_{\alpha}\bigr)$$

Proof : By Lindelof theorem

 \Rightarrow

We may choose a countable sub-collection $[I_K]$ of the $[I_\alpha]$ with the same union.

$$\lim m\left(\bigcup_{K=1}^n I_K\right) = m\left(\bigcup I_\alpha\right) < \infty$$

So *n* exist with the desired property.

Note : If c < d and f is any function then f(c, d) stands to ratio $\frac{f(d) - f(c)}{d - c}$

Theorem (3) Let $\pi(x)$ be a linear on [a, b], $\pi(a) \le \pi(b)$. Let q be a polygon with same end points as π of which n sides the total length of whose projections on the x-axis is d, have a slope less than $-\xi$; $(\xi > 0)$

then
$$\ell(q) > l(\pi) + d\left(\sqrt{(1+\xi^2)} - 1\right)$$
.

Proof : Starting with q ... replace adjacent sides, where necessary, by moving them parallel to themselves until, after a finite number of steps, there is obtained a new polygon q_1 with sides congruent to those of q and whose first n sides have slope $\langle -\xi \rangle$. As each replacement leaves length unchanged $l(q) = l(q_1)$. Clearly $q_1(a, a+d) < -\xi$.

In aside figure;

B is the point $(a+d, \pi(a))$; *C* is the point $(a+d, q_1(a++d))$, Now AC = ABsec $\langle BAC \rangle AB\sqrt{1+\xi^2}$ So $l(\pi) = AD \langle AB + BD \langle AB + CD \langle AB + CD + AC - AB\sqrt{1+\xi^2}$ But AB = d and $CD + AC \leq l(q_1) = l(q)$ So $l(\pi) \langle l(q) - d(\sqrt{1+\xi^2} - 1)$

Corollary : If π and q are defined as above (Theorem-3) but with $\pi(a) \ge \pi(b)$ and with n sides of q

having a slope greater than $\pi(a) \ge \pi(b)$ then the sum conclusion holds.

Proof : To prove it replace π by $-\pi$, q by -q and apply the theorem (3).

Theorem (4) (Lebesque's Differentiation of Theorem) :

If $f \in BV[a, b]$ where a and b are finite, then we have (i) f is differentiable a.e. (ii) the derivative is finite a.e.

Proof: (i) It is sufficient to show $D^+ f \le D_- f$ a.e. since $-f \in BV[a, b]$

We have $D_+ f \ge D^- f$ a.e. this gives $D^+ f \ge D_+ f \ge D^- f \ge D_- f \ge D^+ f$ and equality holds a.e.

We suppose that $D^+ f > D_- f$

on a set of positive measure and obtain a contradiction.

 \Rightarrow f is continuous. a.e.

 \Rightarrow the derivates are measurable.

Also there exists $\varepsilon > 0$ and a set $F \subseteq [a, b]$ with m(F) > 0 and such that $D^+ f - D_- f > 2\varepsilon$ on F but

$$\{x: D^{+}f - D_{-}f > 2\varepsilon\} = \cup\{x: D^{+}f(x) > r_{h} + D_{-}f(x) < r_{h} - \varepsilon\}$$

where $\{r_h\}$ is an enumeration of the rationals.

So at least one set of this union has positive measure. We can therefore find number ε , *h* with $\varepsilon > 0$ and a set *E* in [a, b] with m(E) > 0 and on which *f* is continuous.

Such that

 $D^{+}f > n + \varepsilon_{1}$ $D f < n - \varepsilon \text{ on } E$

Now $f - nx \in BV[a, b]$ and $D^+(f - nx) > D_-(f - nx)$

If and only if $D^+ f > D_- f$

So we may suppose that n = 0

Let π be any polygon drawn as in theorem (3) to approximate f and let p be the set of points of the corresponding partition of [a, b] let $x \in E - P$ and suppose that $\pi'(x) < 0$.

 $\therefore D^{+}f(x) > \varepsilon \text{ there exists } b_{x} > x \text{ such that } f(x, b_{x}) > \varepsilon \text{ then as } f \text{ is continuous at } x \text{ and hence } f(x, \beta)$ is continuous function of x we can find $a_{x} < x$ such that $f(a_{x}, b_{x}) > \varepsilon$ and clearly we may choose a_{x} and b_{x} so that π is linear on (a_{x}, b_{x}) .

Similarly, if $\pi'(x) \ge 0$ we use that fact $D_{-}f < -\varepsilon$ and choose an interval $(a_x - b_x)$ on which π is linear and $f(a_x, b_x) < -\varepsilon$

then $\bigcup_{x} (a_x, b_x) \supseteq E - P$ so by theorem (2)

there exists a finite collection of these intervals say I_1, I_2, \dots, I_n such that

$$m\left(\bigcup_{k=1}^{h} I_{k}\right) > \frac{1}{2} m\left(\bigcup_{x} (a_{x}, b_{x})\right) \ge \frac{1}{2} m\left(E - P\right) = \frac{1}{2} m\left(E\right)$$

By theorem (1)

We may extract a subcollection of disjoint intervals

 I_{K_1}, \dots, I_{K_r} from these, such that

By theorem (3)

To each interval on which π is linear and adding we get

$$\ell(q) > \ell(\pi) + \sum_{i=1}^{r} \ell(I_{K_i}) \left(\sqrt{1+\xi^2} - 1\right) > \ell(\pi) + \frac{1}{6} m(E) \left(\sqrt{1+\xi^2} - 1\right)$$

But ξ is independent of π so

Since $\ell(\pi)$ can always be increased by a constant amount. $\operatorname{Supl}(\pi) = \infty$ taking the supermum over all poygon π approximating f: Hence $f \notin BV[a, b]$ and get contradiction.

 \Rightarrow (i) f is differentiable a.e.

Now,

(ii) Suppose this result is false, then replacing f by -f if necessary we may suppose that there exists a set

E on which *f* is continuous, $E \subseteq [a, b] m(E) > 0$ and $D^+ f = \infty$ on *E*. Then for any M > 0 choose. As (i) a collection of intervals $[(a_x, b_x)]$ covering *E* such that $f(a_x, b_x) > M$ choose the disjoint intervals I_{K_1}, \dots, I_{K_r} as before such that $\sum_{k=1}^r \ell(I_{K_i}) > \frac{1}{6}m(E)$. Let *q* be the polygon, approximating *f*, determined by the end-points of the intervals I_{K_i} the length of *q* in the interval I_{K_i} is greater than $\ell(I_{K_i})\sqrt{1+M^2}$ since the slope of *f* is greater than *M*. So $\ell(q) > \sum_{i=1}^r \ell(I_{K_i})\sqrt{1+M^2} > \frac{1}{6}m(E)\sqrt{1+M^2}$ But *M* is arbitrary and *E* is independent of *M* so taking the supermum over all approximating polygons π we get $\sup \ell(\pi) = \infty$ and (ii) proved.