M.S c Mathematics – SEM 2 Number Theory, CC-10, Unit 4

E-content 5-By Dr Abhik Singh , Guest faculty, PG Department of

Mathematics, Patna University, Patna

Content: Infinite Continued Fractions

Infinite Continued Fractions

Definition: A continued fraction $< a_1$, a_2 , $a_n >$ havinf infinite number of partial quotients is called an infinite continued fraction and its value is defined to be equal to

 $\text{Lim}_n \rightarrow \infty < a_1$, a_2 , $a_n > = \alpha$

So we write $\alpha = \langle a_1, a_2, \dots \rangle$

Similarly for any positive integer k , < a_1 , a_2 , a_k > is called the k-th convergent of α .

Again , for any positive integer $k < a_k$, a_{k+1} , >

Is called the k-th complete quotient of < a_1 , a_2 , > or of α .It is denoted usually by α_k .

Here we study the properties of continued fractions having infinite number of partial quotients.

Theorem

Let a_n be a positive integer for every n > 0 except that a_1 may be zero. Then the continued fraction $< a_1$, a_2 , $a_n >$ converges to a finite limit as n tends to infinity.

Proof:

Consider the convergence of $< a_1, a_2, \dots, a_n > \dots$ (1)

To prove this , we have to prove two theorem that is ' the odd convergents form a strictly increasing sequence and the even convergent a strictly decreasing one' so

We have
$$\frac{Pn}{qn} - \frac{Pn-2}{qn-2} = (-1)^{n-1}a_n/q_nq_{n-2}$$

Where a_n , q_n , and q_{n-2} are all positive integers.

If n is odd , (-1)ⁿ⁻¹=1
Hence have
$$\frac{Pn}{qn} > \frac{Pn-2}{qn-2}$$
(i)
If n is even , (-1)ⁿ⁻¹= -1 and
 $\frac{Pn}{qn} < \frac{Pn-2}{qn-2}$ (ii)

So from (i) and (ii) proves the theorem

Similarly again we prove, second theorem 'The value of a continued fraction is less than every even convergent , and greater than every odd convergent' to prove this we have

$$\mathbf{x} - \frac{Pn}{qn} = \frac{Xn+1 \ Pn + Pn - 1}{Xn+1 \ qn + qn - 1} - \frac{Pn}{qn}$$
$$= (-1) \frac{Pn \ qn - 1 - Pn - 1 \ qn}{qn(Xn+1 \ qn + qn - 1)}$$
$$= (-1)^{n+1} / q_n (\mathbf{x}_{n+1} \ q_n + q_{n-1})$$

Hence x- $\frac{Pn}{qn}$ is negative when n is even and positive when n is odd. This proves the theorem. Now the main proof of the theorem that convergents of (1) form a strictly increasing sequence bu remain less than every even convergent. Thus $\frac{P2n-1}{q2n-1}$ increases as n n increases but is less than x- $\frac{P2}{q2}$. Letting n tends Type equation here to ∞ ,

It follows that

 $Lim_n \rightarrow \infty P_{2n-1}/q_{2n-1} = \alpha_1$

Where α_1 is some positive real number $\leq P_2$ / q_2 .

Similarly P_{2n}/q_{2n} decreases strictly as n increases but remains greater than P_1/q_1 .

Hence $\operatorname{Lim}_n \to \infty P_{2n}/q_{2n} = \alpha_2$ Where $\alpha_2 \ge P_1/q_1$. But $\alpha_2 - \alpha_1 = \operatorname{Lim}_n \to \infty (P_{2n}/q_{2n} - P_{2n-1}/q_{2n-1})$ $= \lim_n \to \infty (1/q_{2n} q_{2n-1})$ = 0

Hence $\alpha_2 = \alpha_1 = \alpha$, say where $P_1/q_1 < \alpha < P_2/q_2$. This implies that P_n/q_n or $< a_1, a_2, \dots, a_n >$ converges to the value α as $n \rightarrow \infty$.

Theorem:

The value of an infinite continued fraction is irrational.

Let there exists a rational number say x such that

 $x = \langle a_1, a_2, \dots, \rangle$. But we know that every rational number can be represented by a finite CF.

Hence $x = (b_1, b_2, ..., b_N)$ for some integers $b_1, b_2, ..., b_N$.

It follows that $< a_1, a_2, \dots > = < b_1, b_2, \dots > b_N >$.

We can then prove that

 $\alpha_1 = b_1$, $\alpha_2 = b_2$ $\alpha_{N-1} = b_{N-1}$

Leaving $a_N + 1/< a_{N+1}$, a_{N+2} , $a_n > a_{N+2}$

= **b**_N

Which is impossible . Hence the theorem is true

Question

Find the CF for $\alpha = \frac{\sqrt{112+8}}{16}$

Solution : 16 divides 112-8².

Hence α is of normal type

 $\alpha_1 = \frac{\sqrt{112+8}}{16} = 1 + \frac{\sqrt{112-8}}{16}$

Therefore we obtain

$$\alpha_{2} = \frac{\sqrt{112+8}}{(\frac{112-8*8}{16})} = \frac{\sqrt{112+8}}{3} = 6 + \frac{\sqrt{112-8}}{3}$$

$$\alpha_{3} = \frac{\sqrt{112+10}}{4} = 5 + \frac{\sqrt{112-10}}{4}$$

$$\alpha_{4} = \frac{\sqrt{112+10}}{3} = 6 + \frac{\sqrt{112-8}}{3}$$

$$\alpha_{5} = \frac{\sqrt{112+8}}{16} = \alpha_{1}$$

Hence $\alpha = \frac{\sqrt{112+8}}{16} = \langle \overline{1, 6, 5, 6} \rangle$ a purely periodic CF.

Assignment

(1) Express $\alpha = \frac{\sqrt{37 + 86}}{33}$ as a CF.

(2) Find the CF representing $\sqrt{71}$.

(3)A periodic continued fraction represents a quadratic irrational.

(4)Find the value of < 2, 4, $\overline{1, 2, 3}$ >