M.S c Mathematics -SEM 2 Number Theory, CC-10 , Unit 4

E-content 5-By Dr Abhik Singh , Guest faculty, PG Department of Mathematics, Patna University, Patna

Content: Infinite Continued Fractions

Infinite Continued Fractions

Definition: A continued fraction < $a_{1}, a_{2}, \ldots . . . a_{n}>$ havinf infinite number of partial quotients is called an infinite continued fraction and its value is defined to be equal to
$\operatorname{Lim}_{n} \rightarrow \infty<a_{1}, a_{2}, \ldots . . a_{n}>=\alpha$
So we write $\alpha=<a_{1}, a_{2}, \ldots . .>$
Similarly for any positive integer $k,<a_{1}, a_{2}, \ldots . . a_{k}>$ is called the k-th convergent of α.

Again , for any positive integer $k<a_{k}, a_{k+1}, \ldots . . .>$
Is called the k-th complete quotient of < $a_{1}, a_{2}, \ldots . . .>$ or of α.lt is denoted usually by α_{k}.

Here we study the properties of continued fractions having infinite number of partial quotients.

Theorem

Let a_{n} be a positive integer for every $\mathrm{n}>0$ except that a_{1} may be zero. Then the continued fraction < $a_{1}, a_{2}, \ldots . . a_{n}>$ converges to a finite limit as \boldsymbol{n} tends to infinity.

Proof:

Consider the convergence of < a_{1}, a_{2}, $a_{n}>$

To prove this, we have to prove two theorem that is 'the odd convergents form a strictly increasing sequence and the even convergent a strictly decreasing one' so

We have $\frac{P n}{q n}-\frac{P n-2}{q n-2}=(-1)^{n-1} a_{n} / q_{n} q_{n-2}$
Where a_{n}, q_{n}, and q_{n-2} are all positive integers.
If \boldsymbol{n} is odd,$(-1)^{n-1}=1$
Hence have $\frac{P n}{q n}>\frac{P n-2}{q n-2}$
If n is even,$(-1)^{n-1}=-1$ and
$\frac{P n}{q n}<\frac{P n-2}{q n-2}$
So from (i) and (ii) proves the theorem
Similarly again we prove, second theorem 'The value of a continued fraction is less than every even convergent, and greater than every odd convergent' to prove this we have
$x-\frac{P n}{q n}=\frac{X n+1 P n+P n-1}{X n+1 q n+q n-1}-\frac{P n}{q n}$

$$
\begin{gathered}
=(-1) \frac{P n q n-1-P n-1 q n}{q n(X n+1 q n+q n-1)} \\
=(-1)^{n+1} / q_{n}\left(x_{n+1} q_{n}+q_{n-1}\right)
\end{gathered}
$$

Hence $\mathrm{x}-\frac{P n}{q n}$ is negative when n is even and positive when n is odd. This proves the theorem.

Now the main proof of the theorem that convergents of (1) form a strictly increasing sequence bu remain less than every even convergent. Thus $\frac{P 2 n-1}{q 2 n-1}$ increases as $n \mathrm{n}$ increases but is less than x $\frac{\boldsymbol{P 2}}{\boldsymbol{q} \mathbf{2}}$. Letting n tends Type equation here.to ∞,

It follows that
$\operatorname{Lim}_{n} \rightarrow \infty P_{2 n-1} / q_{2 n-1}=\alpha_{1}$
Where α_{1} is some positive real number $\leq P_{2} / q_{2}$.
Similarly $P_{2 n} / q_{2 n}$ decreases strictly as n increases but remains greater than P_{1} / q_{1}.

Hence $\operatorname{Lim}_{n} \rightarrow \infty P_{2 n} / q_{2 n}=\alpha_{2}$
Where $\quad \alpha_{2} \geq P_{1} / q_{1}$.
But $\alpha_{2}-\alpha_{1}=\operatorname{Lim}_{n} \rightarrow \infty\left(P_{2 n} / q_{2 n}-P_{2 n-1} / q_{2 n-1}\right)$

$$
\begin{aligned}
& =\lim _{n} \rightarrow \infty\left(1 / q_{2 n} q_{2 n-1}\right) \\
& =0
\end{aligned}
$$

Hence $\alpha_{2}=\alpha_{1}=\alpha$, say where $P_{1} / q_{1}<\alpha<P_{2} / q_{2}$. This implies that P_{n} / q_{n} or $<a_{1}, a_{2}, \ldots . . a_{n}>$ converges to the value α as $n \rightarrow \infty$.

Theorem:
The value of an infinite continued fraction is irrational.
Let there exists a rational number say x such that
$x=\left\langle a_{1}, a_{2}, \ldots . ..\right\rangle$. But we know that every rational number can be represented by a finite CF .

Hence $x=<b_{1}, b_{2}, \ldots . . b_{N}>$ for some integers $b_{1}, b_{2}, \ldots . . b_{N}$.
It follows that < $a_{1}, a_{2}, \ldots . .>=<b_{1}, b_{2}, \ldots . . b_{N}>$.
We can then prove that
$\alpha_{1}=b_{1}, \alpha_{2}=b_{2}$ $\alpha_{N-1}=b_{N-1}$

Leaving $a_{N}+1 /<a_{N+1}, a_{N+2}, \ldots . . . a_{n}>$

$$
=b_{N}
$$

Which is impossible . Hence the theorem is true

Question

Find the CF for $\alpha=\frac{\sqrt{ } 112+8}{16}$
Solution : 16 divides 112-8².
Hence α is of normal type
$\alpha_{1}=\frac{\sqrt{ } 112+8}{16}=1+\frac{\sqrt{112-8}}{16}$
Therefore we obtain
$\alpha_{2}=\frac{\sqrt{ } 112+8}{\left(\frac{112-8 * 8}{16}\right)}=\frac{\sqrt{ } 112+8}{3}=6+\frac{\sqrt{ } 112-8}{3}$
$\alpha_{3}=\frac{\sqrt{ } 112+10}{4}=5+\frac{\sqrt{ } 112-10}{4}$
$\alpha_{4}=\frac{\sqrt{ } 112+10}{3}=6+\frac{\sqrt{ } 112-8}{3}$
$\alpha_{5}=\frac{\sqrt{ } 112+8}{16}=\alpha_{1}$

Hence $\alpha=\frac{\sqrt{ } 112+8}{16}=\langle\overline{1,6,5,6}\rangle$ a purely periodic CF.
Assignment
(1) Express $\alpha=\frac{\sqrt{37}+86}{33}$ as a CF.
(2) Find the CF representing $\sqrt{71}$.
(3)A periodic continued fraction represents a quadratic irrational.
(4)Find the value of $\langle 2,4, \overline{1,2,3}>$

