Measure Theory : (M.Sc. Sem-II) By : Shailendra Pandit Guest Assistant Prof. of Mathematics P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com Call : 9430974625

UNIQUENESS OF THE EXTENSION

Notations :-

 $\mathcal{S}(\mathbb{R})$: for the σ -ring \mathcal{S} generated by the ring \mathbb{R} .

 $\mathcal{K}_{\mathbb{R}}$: for class consisting of $\mathcal{S}(\mathbb{R})$ together with all subsets of sets of $\mathcal{S}(\mathbb{R})$

 μ^* : is an outer measure on $\mathcal{K}\mathbb{R}$ defined as

$$\mu^*(E) = \inf\left\{\sum \mu(E_n) : E_n \in \mathbb{R}, n \in N; E \subseteq \bigcup_{n=1}^{\infty} E_n\right\}$$

 $\boldsymbol{\mathcal{S}}^{*}$ denotes sets of $\boldsymbol{\mu}^{*}$ measurable sets.

Now using the definition of μ^* . We have extended the original measure μ on \mathbb{R} to a complete measure $\overline{\mu}$ on \mathcal{S}^* a σ -ring containing \mathbb{R} .

Theorem (1) : The outer measure μ^* on $\mathcal{K}(\mathbb{R})$ defined by μ on \mathbb{R} , and the corresponding outer measure defined by $\overline{\mu}$ on $\mathcal{S}(\mathbb{R})$ and $\overline{\mu}$ on \mathcal{S}^* are same.

Proof: On observing that the outer measure β^* defined by a measure β on σ -ring \mathbb{R}_1 satisfied for $E \in \mathcal{K}(\mathbb{R}_1)$

$$\beta^*(E) = \inf \{\beta(F) : E \subseteq F \in \mathbb{R}_1\} \dots (e_1)$$

Since

$$\beta^{*}(E) = \inf \left\{ \sum_{n=1}^{\infty} \beta(E_{n}) : E \subseteq \bigcup_{n=1}^{\infty} E_{n}, E_{n} \in \mathbb{R}_{1} \right\}$$

and replacing the sets E_n by disjoint sets $F_n \in \mathbb{R}_1$ such that $F_n \subseteq E_n$ and $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} F_n$ we get

$$\sum \beta(E_n) \ge \sum \beta(F_n) = \beta \left(\bigcup_{n=1}^{\infty} F_n\right) \ge \beta^*(E)$$

Thus (e_1) follows

Since $\mathcal{K}(\mathbb{R}) = \mathcal{K}(\mathcal{S}(\mathbb{R})) = \mathcal{K}(\mathcal{S}^*)$, the outer measures to be considered have the domain of definition as $\mu = \overline{\mu}$ on \mathbb{R} .

$$\mu^{*}(E) = \inf \left\{ \sum_{n \ge 1} \mu(E_{n}) : E \subseteq \bigcup_{n \ge 1} E_{n}, E_{n} \in \mathbb{R} \right\}$$
$$= \inf \left\{ \overline{\mu}(F) : E \subseteq F \in \mathcal{S}(\mathbb{R}) \right\} \text{ by } (e_{1})$$

$$\geq \inf \left\{ \overline{\mu}(F) : E \subseteq F \in \mathcal{S}^* \right\} \text{ as } \mathcal{S}^* \subseteq \mathcal{S}(\mathbb{R})$$
$$\geq \mu^*(E)$$

Thus equality hold throughout and so by (e_1)

The outer measures are equal.

Note : Since the outer measure on $\mathscr{K}(\mathbb{R})$ determines the measurable sets and their measures, the measure and measurable sets obtained by extending. μ on \mathbb{R} , $\overline{\mu}$ on $\mathscr{S}(\mathbb{R})$ and $\overline{\mu}$ on \mathscr{S}^* are the same namely on \mathscr{S}^* without some restriction on $\overline{\mu}$ its extension to $\mathscr{S}(\mathbb{R})$ need not be unique, but we have.

Theorem (2) : If μ is a σ -finite measure on ring \mathbb{R} then it has a unique extension to the σ -ring $\mathcal{S}(\mathbb{R})$.

Proof: Let $\overline{\mu}$ is an extension of μ on $\mathcal{S}(\mathbb{R})$ suppose υ is a measure on $\mathcal{S}(\mathbb{R})$ such that $\mu = \upsilon$ on \mathbb{R} . We wish to show that $\overline{\mu} = \upsilon$ on $\mathcal{S}(\mathbb{R})$. If $E \in \mathcal{S}\mathbb{R}$ and $\in >0, \exists \{E_n\}, E_n \in \mathbb{R}$ $E \subseteq \bigcup E_n$ such that

$$\overline{\mu}(E) + \epsilon \ge \sum_{n \ge 1} \mu(E_n). \text{ But } A = \bigcup_{n \ge 1} E_n \text{ may be written as disjoint.}$$
Union of F_n , $F_n \subseteq E_n$, $F_n \in \mathbb{R}$ so we get $\overline{\mu}(E) + \epsilon \ge \sum_{n \ge 1} \mu(E_n) = \sum_{n \ge 1} \upsilon(E_n) = \upsilon(A) \ge \upsilon(E)$
So $\overline{\mu}(E) \ge \upsilon(E)$
Suppose that $E \in \mathcal{S}(\mathbb{R}), \ \overline{\mu}(E) < \infty$ and $\epsilon > 0$

then as above there exist $A \supseteq E$ such that $\overline{\mu}(A) < \overline{\mu}(E) + \epsilon$ where $A = \bigcup_{n \ge 1} F_n$ the sets F_n being

disjoint sets of ${\mathbb R}$.

So that
$$\mu(A) = \upsilon(A)$$
 so
 $\overline{\mu}(E) \le \overline{\mu}(A) = \upsilon(E) + \upsilon(A - E)$
But by the first part $\upsilon(A - E) \le \overline{\mu}(A - E)$ also
Since $\overline{\mu}(E) < \infty$ we have $\overline{\mu}(A - E) < \in$
So $\overline{\mu}(E) \le \upsilon(E) + \epsilon$; Hence $\overline{\mu}(E) = \upsilon(E)$ if $\overline{\mu}(E) < \infty$ but
Now μ is σ -finite, for each $E \in \mathcal{S}(\mathbb{R})$ we have $E \subseteq \bigcup_{n \ge 1} E_n$ where, for each $n_1 - E_n \in \mathbb{R}$ and

 $\mu(E_n) < \infty$ then we may write $E = \bigcup_{n \ge 1} F_n$ where the F_n are disjoint sets of \mathbb{R} and $\mu(F_n) < \infty$ so $\overline{\mu}(E) = \sum \mu(F_n) = \sum_{n \ge 1} \mu(F_n) = \upsilon(E)$ proved.

SOME DEFINITIONS :

Definition (1): A pair [X, S] where S is a σ -algebra of subsets of a space X, is called a measurable space the members of S are the measurable sets.

Definition (2): A triplet $[X, S, \mu]$ is called a measure space if [X, S] is a measurable space and μ is a measure on S.