M.S c Mathematics –SEM 2 Number Theory, CC-10, Unit 4

E-content 4–**By Dr Abhik Singh**, Guest faculty, PG Department of Mathematics, Patna University, Patna

Content: Continued Fractions

Continued Fractions

Consider the following expression $3+\frac{1}{4+\frac{1}{6+\frac{1}{2}}}$ (1).

The value of this expression can be calculated by the ordinary arithmetical process

$$6+\frac{1}{2}=\frac{13}{2}$$
,

$$4+\frac{1}{6+\frac{1}{2}}=4+\frac{2}{13}=\frac{54}{13}$$

$$3 + \frac{1}{4 + \frac{1}{6 + \frac{1}{2}}} = 3 + \frac{13}{54} = \frac{175}{54}$$
 which is the value of expression (1).

 is called a simple continued fraction. It is usually written in one of the following forms

$$3 + \frac{1}{4+6+2} = 0$$
 or < 3, 4, 6, 2 >

Definition: Let a₁ be an arbitrary integer and a₂, a₃

a2 + a3 + ... aN continued fraction. We may call (1) a continued fraction or CF.

For convenience (1) is usually written as

$$a_1 + \frac{1}{a^2 + a^3 + \dots} \frac{1}{a^N}$$
 (2)

or as

is usually written as $< a_1, a_2, \dots > \dots > \dots (3)$.

The terms a_1 , a_2 , a_N of (1) are called partial quotients. a_1 is the first partial quotients .

Theorem

Every Continued fraction with finite number of partial quotients a_1 , a_2 , a_3 ,, a_N represents a rational fraction.

Solution: We shall denote this rational fraction by the letter .

$$x = a_1 + \frac{1}{a_2 + a_3 + a_N} + \frac{1}{a_N}$$

$$x = \langle a_1, a_2, a_N \rangle$$

and we say $< a_1, a_2, \dots a_N >$ is the continued fraction of x or the continued fraction expression of x.

Every rational fraction can be expressed as a continue fraction with finite number of partial quotients. Suppose the given fraction is $\frac{103}{24}$.

Then
$$\frac{103}{24} = 4 + \frac{7}{24} = 4 + \frac{1}{\frac{24}{7}}$$
.

$$\frac{24}{7}$$
 = 3 + $\frac{3}{7}$ = 3 + $\frac{1}{\frac{7}{2}}$

$$\frac{7}{3} = 2 + \frac{1}{3}$$

Hence
$$\frac{103}{24} = 4 + \frac{1}{3+2+3} = \frac{1}{3}$$

We can carry out the above process in a simpler way as follows (similar to the process of finding the g. c .d. of 103 and 24

24 | 103 | 4

96

--

7 | 24 | 3

21

--

3 | 7 | 2

6

--

1 | 3 | 3

3

--

0

Therefore
$$\frac{103}{24} = < 4, 3, 2, 3 > .$$

Theorem

Every rational fraction can be expressed as simple continued fraction with the last quotient greater than 1 in a unique way.

Proof: Let $\frac{a}{b}$ be the given fraction .Then we form the following sequence of equations exactly as in the case of Euclid's algorithm for a and b.

$$a = ba_1 + r_1$$
 , o< $r_1 < b$ (1)
 $b = r_1a_2 + r_2$, o< $r_2 < r_1$ (2)
 $r_1 = r_2a_3 + r_3$, o< $r_3 < r_2$ (3)

.....

$$r_{N-2} = r_{N-1} a_N + r_N$$
 , $0 = r_N$ (N)

Since $r_1 > r_2 > r_3 > \dots$ there exists an integer N such

that r_N =0 ,and there the process ends. From equation (N) it is clear that $a_N > 1$.

Note if b>a , then a_1 =0 and if $\frac{a}{b}$ is negative, a_1 is negative. From equation (1) to (N) we have

$$\frac{a}{b} = a_1 + r_{1/b} = a_1 + \frac{1}{\frac{b}{r_1}}$$

......

.....

$$=a_1 + \frac{1}{a_2 + a_3 + a_4 + \dots + a_N}$$
 (A)

Thus $\frac{a}{b}$ is expressed as a simple continued fraction with $a_N > 1$.WE have now to prove that the expansion A is unique.

Suppose it is not uniue. Then it follows that

$$a_1 + \frac{1}{a_2 + a_3 + a_4 + \dots + \frac{1}{a_{2+1}} = b_1 + \frac{1}{b_2 + a_3 + a_4 + \dots + \frac{1}{b_{2+1}} = b_1 + \frac{1}{b_2 + a_3 + a_4 + \dots + \frac{1}{b_{2+1}} = b_1 + \frac{1}{b_2 + a_3 + a_4 + \dots + \frac{1}{b_{2+1}} = b_1 + \frac{1}{b_2 + a_3 + a_4 + \dots + \frac{1}{b_{2+1}} = b_1 + \frac{1}{b_2 + a_3 + a_4 + \dots + \frac{1}{b_{2+1}} = b_1 + \frac{1}{b_2 + a_3 + a_4 + \dots + \frac{1}{b_{2+1}} = b_1 + \frac{1}{b_2 + a_3 + a_4 + \dots + \frac{1}{b_2 + a_4 + a_4 + \dots + \frac{1}{b_4 + \dots + \frac{b$$

$$\frac{1}{a^2+}\frac{1}{a^3+}\frac{1}{a^4+}\dots \dots \frac{1}{a^2+}\frac{1}{a^3+}\frac{1}{a^4+}\dots \dots \frac{1}{a^4}\frac{1}{a^4+}\dots \dots \frac{1}{a^4}$$

are rational proper fraction. Whence a1= b1 and

$$\frac{1}{a^{2} + \frac{1}{a^{3} + \frac{1}{a^{4} + \dots}} \dots \frac{1}{+a^{N}} = \frac{1}{b^{2} + \frac{1}{b^{3} + \frac{1}{a^{4} + \dots}} \dots \frac{1}{+b^{l}} \text{ which implies}$$

$$a_{2} + \frac{1}{a^{3} + \frac{1}{a^{4} + \dots}} \dots \frac{1}{+a^{N}} = b_{2} + \frac{1}{b^{3} + \frac{1}{a^{4} + \dots}} \dots \frac{1}{+a^{l}} \dots \dots (C)$$

Repeating the same argument with respect to equation (C) we obtain

$$a_2 = b_2$$
 and $a_3 + \frac{1}{a_4 + \dots + a_N} = b_3 + \frac{1}{a$

In this way we obtain further in succession $a_3=b_3$, $a_4=b_4$, $a_{N-1}=b_{N-1}$ and are left with the equation

$$a_N = b_N + \left(\frac{1}{bN+1+} \frac{1}{bN+2+} \frac{1}{+bl}\right)$$

Bu this is impossible since l>N and $b_l>1$.Hence N=l and $a_N=b_l$. It follows that the expansion (A) is unique.

Question: Find the continued fraction expansion of $\frac{21}{73}$.

Hence
$$\frac{21}{73}$$
 = < 0,3,2,10 >

