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POINTWISE CONVERGENCE OF SEQUENCES OF FUNCTIONS 

This chapter deals with sequences  nf  whose terms are real – or complex valued functions having a 

common domain on the real line R or in the complex plane C. For each x in the domain we can form 

another sequence   nf x  whose terms are the corresponding function values. Let S denote the set of 

x for which this second sequence converges. The function f defined by the equation 

   lim , if ,n
n

f x f x x S


   

Is called the limit function of the sequence  nf , and we say that  nf  converges pointwise to f on 

the set S. 

 Our chief interest in this chapter is the following type of question : If each function of a 

sequence  nf  has a certain property, such as continuity, differentiability, or integrability, to what 

extent is this property transferred to the limit function? For example, if each function nf  is 

continuous at c, is the limit function f also continuous at c? We shall see that, in general, it is not. In 

fact, we shall find that pointwise convergence is usually not strong enough to transfer any of the 

properties mentioned above from the individual terms nf  to the limit function f. Therefore we are led 

to study stronger methods of convergence that do preserve these properties. The most important of 

these is the notion of uniform convergence.  

 Before we introduce uniform convergence, let us formulate one of our basic questions in 

another way. When we ask whether continuity of each nf  at c implies continuity of the limit function 

f at c, we are really asking whether the equation 

   lim ,n n
x c

f x f c


  

Implies the equation 

   lim .
x c

f x f c


  

But (1) can also be written as follows :  

   lim lim lim limn n
x c n n x c

f x f x
   

 . 
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Therefore our question about continuity amounts to this : Can we interchange the limit symbols in 

(2)? We shall see that, in general, we cannot. First of all, the limit in (1) may not exist. Secondly, even 

if it does exist, it need not be equal to  f c . We encountered a similar situation in Chapter 8 in 

connection with iterated series when we found that  
1 1

,
m n

f m n
 

    is not necessarily equal to 

 
1 1

,
n m

f m n
 

   . 

 The general question of whether we can reverse the order of two limit processes arises again 

and again in mathematical analysis. We shall find that uniform convergence is a far-reaching 

sufficient condition for the validity of interchanging certain limits, but it does not provide the 

complete answer to the question. We shall encounter examples in which the order of two limits can be 

interchanged although the sequence is not uniformly convergent. 

EXAMPLES OF SEQUENCES OF REAL-VALUED FUNCTIONS 

The following examples illustrate some of the possibilities that might arise when we form the limit 

function of a sequence of real-valued functions. 

Example-1 : A sequence of continuous functions with a discontinuous limit function. Let 

   2 2/ 1n n
nf x x x   if , 1, 2, ....x R n   The graphs of a few terms are shown in figure. In this 

case  lim n
n

f x


 exists for every real x, and the limit function f is given by  

 

0 1,

1
1,

2

1 1.

if x

f x if x

if x

 



 




 

Each nf  is continuous on R, but f is discontinuous at 1x   and 1x   . 

Examples-2 : A sequence of functions for which    
1 1

0 0
lim lim .n n
n n

f x dx f x dx
 

   Let 

   2 1
n

nf x n x x   if , 1, 2, ....x R n   If 0 1x   the limit    lim n
n

f x f x


  exists and 

equals 0. Hence  
1

0
0f x dx  . But 

    
1 12

0 0
1

n

nf x dx n x x dx    

          
  

2 2 2
12

0
1

1 2 1 2

n n n n
n t t dt

n n n n
    

     

So  
1

0
lim 1.n
n

f x dx


  In other words, the limit of the integrals is not equal to the integral of the 

limit function. Therefore the operations of “limit” and “integration” cannot always be interchanged. 
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Example-3 : A sequence of differentiable functions  nf  with limit 0 for which  'nf  diverges. Let 

   sin /nf x nx n  if , 1, 2, ....x R n   Then  lim 0n
n

f x


  for every x. But 

 ' cos ,nf x n nx  so  'lim n
n

f x


 does not exist for any x. 

DEFINITION OF UNIFORM CONVERGENCE 

Let  nf  be a sequence of functions which converges pointwise on a set  0, 1S  limit function f. 

This means that for each point x in S and for each 0,   there exists as N (depending on both x and 

 ) such that  

   implies nn N f x f x     

If the same N words equally well for every point in S, the convergence is said to be uniform on S. That 

is, we have  

Definition 1 : A sequence of function  nf  is said to converge uniformly to f on a set S if, for every 

0,   there exists an N (depending only on  ) such that n N  implies. 

    ,nf x f x      for every x in S. 

We denote this symbolically by writing  

uniformly on .nf f S  

When each term of the sequence  nf  is real-valued, there is a useful geometric interpretation of 

uniform convergence. The inequality    nf x f x    is then equivalent to the two inequalities 

     nf x f x f x     …(3) 

If (3) is to hold for all n N  and for all x in S, this means that the entire graph of nf  (that is, the set 

    , : ,nx y y f x x S  ) lies within a “band” of height 2  situated symmetrically about the 

graph of f. 

A sequence  nf  is said to be uniformly bounded on S if there exists a constant 0M   such 

that  nf x M  for all x in S and all n. The number M is called a uniform bound for  nf . If each 

individual function is bounded and if nf f  uniform on S, then it is easy to prove that  nf  is 

uniformly bounded on S. (See exercise-1) This observation often enables us to conclude that a 

sequence is not uniformly convergent. For instance, a glance at figure tells us at once that the 

sequence of Example 2 cannot converge uniformly on any subset containing a neighbourhood of the 

origin. However, the convergence in this example is uniform on every compact subinterval not 

containing the origin. 
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UNIFORM CONVERGENCE AND CONTINUITY 

Theorem 2. Assume that nf f  uniformly on S. If each nf  is continuous at a point c of S, then the 

limit function f is also continuous at c. 

Note : If c is an accumulation point of S, the conclusion implies that  

   lim lim lim limn n
x c n n x c

f x f x
   

  

Proof : If c is an isolated point of S, then f is automatically continuous at c. Suppose, then, that c is an 

accumulation point of S. By hypothesis, for every 0   there is an M such that n M  implies. 

   
3

nf x f x


   for every x in S. 

Since Mf  is continuous at c, there is a neighbourhood B(c) such that  x B c S   implies. 

   
3

M Mf x f c


  . 

But 

               M M M Mf x f c f x f x f x f c f c f c       . 

If   ,x B c S   each term on the right is less than / 3  and hence     .f x f c    This proves 

the theorem. 

Note : Uniform convergence of  nf  is sufficient but not necessary to transmit continuity from the 

individual terms to the limit function. In Example 2, we have a non-uniformly convergent sequence of 

continuous functions with a continuous limit function. 


