Dr Abhik Singh

Guest Assistant Professor

PG Dept of Mathematics

e- content -M. Sc -Semester -III

Number Theory -CC-10

Infinite Continued fraction

A continued fraction $<a_{1}, a_{2}, \ldots \ldots . a_{n}>$ having infinite number of partial quotient is called an infinite continued fraction and its value is defined to be equal to

$$
\lim _{n \rightarrow \infty}<a_{1}, a_{2}, \ldots \ldots \ldots a_{n}>=\alpha
$$

Note: (i)For any positive integer $\mathrm{k},<a_{1}, a_{2}, \ldots \ldots . a_{k}>$ is called the k convergent of α
(ii) Again for any positive integer $\mathrm{k}<a_{k}, a_{k+1}, \ldots \ldots .>$ is called the $<a_{1}, a_{2}, \ldots \ldots . a_{n}>$ or of α. It is usually denoted by α_{k}.

Theorem

Let $<a_{1}, a_{2}, \ldots . .>=\alpha$ then
(i) $\quad \alpha_{n}=a_{n}+\frac{1}{\alpha_{n+1}}=<a_{n}, \alpha_{n+1}>$
(ii) $\quad\left[\alpha_{n}\right]=a_{n}$

Proof: Let n be the given integer
(i) $\quad \alpha_{n}=<a_{n}, a_{n+1}, \ldots \ldots>$

$$
\begin{gathered}
=\lim _{m \rightarrow \infty}<a_{n}, a_{n+1}, \ldots \ldots a_{m}> \\
=\lim _{m \rightarrow \infty} a_{n}+\frac{1}{<a_{n+1}, a_{n+2, \ldots \ldots \ldots \ldots,} a_{m}>} \\
=a_{n}+\frac{1}{<a_{n+1}, a_{n+2, \ldots \ldots \ldots . .,} a_{m}>} \\
=a_{n}+\frac{1}{\alpha_{n+1}} \\
=<a_{n}, \alpha_{n+1}>
\end{gathered}
$$

(ii) $\quad \alpha_{n}=a_{n}+\frac{1}{\alpha_{n+1}}$ and

$$
\alpha_{n+1}=a_{n+1}+\frac{1}{\alpha_{n+2}}
$$

$$
0<\frac{1}{\alpha_{n+1}}<1
$$

So it follows that $\left[\alpha_{n}\right]=a_{n}$

Corollary $1[\alpha]=a_{1}$

Corollary2 $\alpha_{n}>1$ for every n

Corollary 3

$$
\begin{aligned}
& \alpha=<a_{1}, \alpha_{2}> \\
& .=\quad " \\
& =<a_{1}, a_{2}, \ldots \ldots . a_{n,} \alpha_{n+1}>
\end{aligned}
$$

Theorem

The continued fraction representing an irrational number is infinite, and is also unique.
Proof:
Let α be a given irrational number. Then
$\alpha=\alpha_{1}=\left[\alpha_{1}\right]+\left(\alpha_{1}-\left[\alpha_{1}\right]\right)$
where $\left[\alpha_{1}\right]$ is an integer number and $\alpha_{1}-\left[\alpha_{1}\right]$ is a positive irrational no <1

We put $a_{1}=\left[\alpha_{1}\right]$ and $\left[\alpha_{2}\right]=\frac{1}{\alpha_{1}-\left[\alpha_{1]}\right.}$
Then we have $\alpha_{1}=a_{1}+\frac{1}{\alpha_{2}}$
Where α_{2} is an irrational no >1.
Repeating the same process with α_{2} in place of α_{1}.
We get

$$
\alpha_{2}=a_{2}+\frac{1}{\alpha_{3}}
$$

where $a_{2}=\left[\alpha_{2}\right]$

$$
\begin{array}{r}
{\left[\alpha_{3}\right]=\frac{1}{\alpha_{2}-\left[\alpha_{2}\right]} \quad=\text { an irrational number }>1}
\end{array}
$$

Then we get in succession

$$
\begin{gathered}
\alpha_{1}=a_{1}+\frac{1}{\alpha_{2}}> \\
\alpha_{2}=a_{2}+\frac{1}{\alpha_{3}}
\end{gathered}
$$

$$
\alpha_{n}=a_{n}+\frac{1}{\alpha_{n+1}}>
$$

where α_{n+1} is an irrational number >1

The Process obviously never ends

Therefore the quotients a_{1}, a_{2} \qquad are infinite in number.

And we obtain

$$
\alpha=\alpha_{1}=<a_{1}, a_{2}, \ldots \ldots . a_{n}, \alpha_{n+1}>
$$

$W e$ have to still to show that

$$
<a_{1}, a_{2} \ldots \ldots \ldots \ldots \ldots . a_{n,} a_{n+1}>
$$

We have to still to show that
$<a_{1}, a_{2} \ldots \ldots \ldots \ldots \ldots a_{n}>=\frac{P_{n}}{q_{n}}$

Actually converges to the value α as $n \rightarrow \infty$

This is done as follows

$$
\begin{gathered}
\alpha=\alpha_{1}=<a_{1}, a_{2}, \ldots \ldots a_{n} \alpha_{n+1}> \\
=\alpha_{n+1} \\
=\frac{\alpha_{n+1} P_{n}+P_{n-1}}{\alpha_{n+1} q_{n+} q_{n-1}} \\
\alpha-\frac{P_{n}}{q_{n}}=\frac{P_{n-1} q_{n}-P_{n} q_{n-1}}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)} \\
=\frac{(-1)^{n-1}}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)}
\end{gathered}
$$

Which tends to zero as n tends to infinity. This means

$$
\begin{equation*}
\alpha=\lim _{n \rightarrow \infty} \frac{P_{n}}{q_{n}}=\lim _{n \rightarrow \infty}<a_{1}, a_{2}, \ldots \ldots . a_{n},> \tag{i}
\end{equation*}
$$

So $\alpha=<a_{1}, a_{2}, \ldots \ldots . a_{n,}>$

This proves the first part of the theorem.
We now prove that the CF (1) is unique.

Suppose this is not true. It follows that

$$
\begin{aligned}
\alpha & =<a_{1}, a_{2}, \ldots \ldots .> \\
& =<b_{1}, b_{2}, \ldots \ldots .>
\end{aligned}
$$

We have prove that $b_{n}=a_{n}$ for every n .
This implies that the two continued fraction expansions are identical.

Hence Proved

