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  Infinite Continued fraction 

A continued fraction  < 𝑎1,𝑎2, … … . 𝑎𝑛 > having infinite number of partial quotient  is  called an 

infinite continued fraction and its value is defined to be equal to 

lim
𝑛→∞

< 𝑎1, 𝑎2, … … … 𝑎𝑛 >= 𝛼 

Note:  (i)For any positive integer k, < 𝑎1,𝑎2, … … . 𝑎𝑘 > is called the k convergent of 𝛼 

             (ii) Again for any positive integer k   < 𝑎𝑘 , 𝑎𝑘+1 , … … . . >  is called the < 𝑎1,𝑎2, … … . 𝑎𝑛 > or 

of 𝛼 . It is usually denoted by 𝛼𝑘. 

Theorem 

Let < 𝑎1, 𝑎2, … . . >= 𝛼 then 

(i) 𝛼𝑛= 𝑎𝑛+ 
1

𝛼𝑛+1
=< 𝑎𝑛, 𝛼𝑛+1 > 

(ii) [𝛼𝑛]  = 𝑎𝑛 

 

Proof: Let n be the given integer  

(i) 𝛼𝑛 =< 𝑎𝑛 ,𝑎𝑛+1, … … > 

= lim
𝑚→∞

< 𝑎𝑛 , 𝑎𝑛+1 , … … 𝑎𝑚 > 

= lim
𝑚→∞

𝑎𝑛 +
1

< 𝑎𝑛+1,𝑎𝑛+2,………..,𝑎𝑚 >
 

= 𝑎𝑛 +
1

< 𝑎𝑛+1,𝑎𝑛+2,………..,𝑎𝑚 >
 

= 𝑎𝑛 +
1

𝛼𝑛+1
 

=< 𝑎𝑛, 𝛼𝑛+1 > 

(ii) 𝜶𝒏 = 𝒂𝒏 +
𝟏

𝜶𝒏+𝟏
 and  

𝛼𝑛+1 = 𝑎𝑛+ 1 +
1

𝛼𝑛+2
 

𝐻𝑒𝑛𝑐𝑒  



 0 <
1

𝛼𝑛+1 
< 1 

 

So it follows that [𝛼𝑛] = 𝑎𝑛 

 

Corollary 1 [𝛼] = 𝑎1 

 

Corollary2 𝛼𝑛  > 1 for every n 

 

 

Corollary 3 

 𝛼 = < 𝑎1, 𝛼2 > 

 .     =        " 

 =< 𝑎1, 𝑎2, … … . 𝑎𝑛,𝛼𝑛+1 > 

 

 

Theorem 

The continued fraction representing an irrational number is infinite, and is also 

unique. 

Proof:  

 Let 𝛼 be a given irrational number. Then   

𝛼 = 𝛼1 = [ 𝛼1] + (𝛼1 − [𝛼1])  

𝑤ℎ𝑒𝑟𝑒 [𝛼1] is an integer number  and 𝛼1 − [𝛼1] is a positive irrational no  < 1 

 

We put 𝑎1 = [𝛼1] and [𝛼2] =
1

𝛼1−[𝛼1]
 

Then we have 𝛼1 = 𝑎1 +
1

𝛼2
 

Where 𝛼2 is an irrational no >1. 

Repeating the same process with 𝛼2 in place of 𝛼1. 

We get 

𝛼2 = 𝑎2 +
1

𝛼3
 

𝑤ℎ𝑒𝑟𝑒 𝑎2 = [𝛼2] 

 

 [𝛼3] =
1

𝛼2−[𝛼2]
 

= 𝑎𝑛 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 > 1 

Then we  get  in succession 

𝛼1 =  𝑎1 + 
1

𝛼2
> 

 .                                        𝛼2  =  𝑎2  +
1

𝛼3
      

 ′′ 



                                          𝛼𝑛 = 𝑎𝑛 +
1

𝛼𝑛+1
> 

 

 𝑤ℎ𝑒𝑟𝑒  𝛼𝑛+1 is an irrational number > 1 

 

𝑇ℎ𝑒  Process obviously never ends 

 

Therefore the quotients  𝑎1, 𝑎2 .............are infinite in number.  

 

And we obtain  

 

𝛼 = 𝛼1 =< 𝑎1, 𝑎2, … … . 𝑎𝑛,𝛼𝑛+1 > 

𝑊𝑒  have to still to show that 

< 𝑎1, 𝑎2 … … … … … . . 𝑎𝑛,𝑎𝑛+1 > 

 

We have to still to show that  

 

< 𝑎1, 𝑎2 … … … … … . . 𝑎𝑛, >=
𝑃𝑛

𝑞𝑛
 

 

Actually converges to the value 𝛼 as 𝑛 → ∞ 

 

This is done as follows 

𝛼 = 𝛼1 =< 𝑎1, 𝑎2, … … . 𝑎𝑛,𝛼𝑛+1 > 

= 𝛼𝑛+1  

=
𝛼𝑛+1𝑃𝑛 + 𝑃𝑛−1

𝛼𝑛+1𝑞𝑛+𝑞𝑛−1
 

𝛼 − 
𝑃𝑛

𝑞𝑛
=

𝑃𝑛−1𝑞𝑛 − 𝑃𝑛𝑞𝑛−1

𝑞𝑛(𝛼𝑛+1𝑞𝑛 + 𝑞𝑛−1)
 

=
(−1)𝑛−1

𝑞𝑛(𝛼𝑛+1𝑞𝑛 + 𝑞𝑛−1)
 

Which tends to zero as n tends to infinity. This means   

𝛼 = lim
𝑛→∞

𝑃𝑛

𝑞𝑛
  = lim

𝑛→∞
< 𝑎1, 𝑎2, … … . 𝑎𝑛, > 

So  𝛼  =< 𝑎1, 𝑎2, … … . 𝑎𝑛, >..............(i) 

  

This proves the first part of the theorem. 

We now prove that the CF (1)  is unique. 

 

 

 



Suppose  this is not true .It follows that  

𝛼 =< 𝑎1, 𝑎2, … … . > 

  =< 𝑏1, 𝑏2, … … . > 

We have prove that  𝑏𝑛 = 𝑎𝑛 for every n. 

This implies that the two continued fraction expansions are identical. 

 

 

          Hence Proved 

 

 

 

 

 

 

  

 

 

 


