e-content (lecture-32)
by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-1 (Functional Analysis)
Topic: Problem in Banach space .
Problem: let $B(E)$ denotes thet set of all operators on a normed linear space E. Show that in the algebra $B(E)$

Multiplication is related to the norm by
$\left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|$.Also prove that multiplication in $B(E)$ is jointly continuous.

Solution: since for all $x \in E$ we have

$$
\begin{aligned}
& \left\|\left(T_{1} T_{2}\right) x\right\|=\left\|T_{1}\left(T_{2} x\right)\right\| \leq\left\|T_{1}\right\|\left\|T_{2} x\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|\|x\| \\
& \left\|\left(T_{1} T_{2}\right) x\right\| \frac{1}{\|x\|} \leq\left\|T_{1}\right\|\left\|T_{2}\right\| \text { for all } x \\
\Rightarrow & \sup \left\{\left\|\left(T_{1} T_{2}\right) x\right\| \frac{1}{\|x\|}: x \in E, x \neq 0\right\} \leq\left\|T_{1}\right\|\left\|T_{2}\right\| \\
& \left\|T_{1} T_{2}\right\| \leq\left\|T_{1}\right\|\left\|T_{2}\right\|
\end{aligned}
$$

Now we have to show that multiplication in $B(E)$ is jointly continuous.

Let $A_{n} \rightarrow A, T_{n} \rightarrow T \Rightarrow A_{n} T_{n} \rightarrow A T$
Now $\left\|A_{n} T_{n}-A T\right\|=\left\|A_{n}\left(T_{n}-T\right)+\left(A_{n}-A\right) T\right\|$

$$
\begin{aligned}
& \leq\left\|A_{n}\right\|\left\|\left(T_{n}-T\right)\right\|+\left\|\left(A_{n}-A\right)\right\|\|T\| \\
& \rightarrow\left\|A_{n}\right\| \cdot 0+0 .\|T\|=0
\end{aligned}
$$

Hence $A_{n} T_{n} \rightarrow A T$.
So multiplication in $B(E)$ is jointly continuous.
Question: If M is a closed linear subspace of a normed linear space E, and if T is the natural mapping of E onto the quotient space E / M defined by $T(x)=x+M$

Show that t is a continuous linear transformation for which $\|T\| \leq 1$.

Solution: since for all $x, y \in E$ and a, b are scalar we have $T(a x+b y)=(a x+b y)+M$

$$
\begin{aligned}
& =(a x+M)+(b y+M) \\
& =a(x+M)+b(y+M) \\
& =a T(x)+b T(y)
\end{aligned}
$$

So T is a linear transformation from E to E / M.

Also we have $\|T(x)\|=\|x+M\|$

$$
\begin{aligned}
& =\inf \{\|\mathrm{x}+\mathrm{v}\|: \mathrm{v} \in \mathrm{M}\} \\
& \leq\|x\|=1 .\|x\|
\end{aligned}
$$

So T is continuous and

$$
\|T\|=\sup \left\{\frac{\|T x\|}{\|x\|}: x \in E, x \neq 0\right\} \leq 1 .
$$

END.

