e-content (lecture-32)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-1 (Functional Analysis)

Topic: Problem in Banach space .

Problem: let B(E) denotes thet set of all operators on a normed linear space E. Show that in the algebra B(E)

Multiplication is related to the norm by

 $||T_1T_2|| \le ||T_1|| ||T_2||$. Also prove that multiplication in B(E) is jointly continuous .

Solution: since for all $x \in E$ we have

 $\begin{aligned} \|(T_1T_2)x\| &= \|T_1(T_2x)\| \le \|T_1\| \|T_2x\| \le \|T_1\| \|T_2\| \|x\| \\ \|(T_1T_2)x\| \frac{1}{\|x\|} \le \|T_1\| \|T_2\| \text{ for all } x \end{aligned}$ $\Rightarrow \sup\{ \|(T_1T_2)x\| \frac{1}{\|x\|} \colon x \in E, x \neq 0 \} \le \|T_1\| \|T_2\| \\ \|T_1T_2\| \le \|T_1\| \|T_2\|. \end{aligned}$ Now we have to show that multiplication in B(E) is jointly continuous.

Let
$$A_n \to A, T_n \to T \Rightarrow A_n T_n \to AT$$

Now $||A_n T_n - AT|| = ||A_n (T_n - T) + (A_n - A)T||$
 $\leq ||A_n|| ||(T_n - T)|| + ||(A_n - A)|| ||T||$
 $\rightarrow ||A_n|| \cdot 0 + 0 \cdot ||T|| = 0$

Hence $A_n T_n \to AT$.

So multiplication in B(E) is jointly continuous.

Question: If *M* is a closed linear subspace of a normed linear space *E*, and if T is the natural mapping of E onto the quotient space E/M defined by T(x) = x + M

Show that t is a continuous linear transformation for which $||T|| \le 1$.

Solution : since for all $x, y \in E$ and a, b are scalar we have T(ax + by) = (ax + by) + M

$$= (ax + M) + (by + M)$$
$$= a(x + M) + b(y + M)$$
$$= aT(x) + bT(y)$$

So T is a linear transformation from E to E/M.

Also we have ||T(x)|| = ||x + M||= $\inf\{||x + v|| : v \in M\}$ $\leq ||x|| = 1. ||x||$

So T is continuous and

$$||T|| = \sup \left\{ \frac{||Tx||}{||x||} : x \in E, x \neq 0 \right\} \le 1.$$

END.