e-content (lecture-30)
by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)
Topic: Problem in Hilbert space
Question: show that in a Hilbert space Han orthonormal set S is complete iff $x \perp S \Rightarrow x=0$.

Solution: suppose that an orthonormal set S is complete and $x \perp S$.

Then to prove that $x=0$ Let $x \neq 0$. Then $e=\frac{x}{\|x\|}$ is a unit vector such that $e \perp S$.

So $\{e, S\}$ is an orthonormal set properly containing S.
This contradicts that S is complete orthonormal set. Hence we must have $x=0$.

Conversely suppose that $x \perp S \Rightarrow x=0$. then we have to prove that S is complete orthonormal set.

Suppose S is not complete orthonormal set.
Then there exists a unit vector e such that $\{e, S\}$ is an orthonormal set so we have $e \perp S$ then by hypothesis $e=0$ this is a contradiction since e is a unit vector $>$ Hence S must be complete.

Problem: If $\left\{e_{i}\right\}$ is an orthonormal set in a Hilberty space H, and if x, y are arbitrary vectors in H then
$\sum_{i}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right| \leq\|x\| .\|y\|$
Solution: Let $S=\left\{e_{i}:\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)} \neq 0\right\}$
Then S is either empty or countable. if S is empty then we have $\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}=0$ for all i.

In this case we $0=\sum_{i}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right| \leq\|x\| .\|y\|$
if S is not empty Then S is either finite or countably infinite. If S is finite .then we can write

$$
\begin{gathered}
S=\left\{e_{1}, e_{2} \ldots . e_{n}\right\} \text { in this case } \\
\sum_{i}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right|=\sum_{i=1}^{n}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right| \leq\|x\| .\|y\| \ldots .(1)
\end{gathered}
$$

[using Cauchy and Bessel inequality]

If S is countably infinite. then we can write

$$
S=\left\{e_{1}, e_{2} \ldots e_{n} \ldots\right\} \text { in this case }
$$

$\sum_{i}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right|=\sum_{i=1}^{n}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right|$
Since the inequality (1) is true for all n.
So it must be true in the limit hence we have

$$
\sum_{i=1}^{\infty}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right| \leq\|x\| .\|y\|
$$

From (2) we get $\sum_{i=1}^{\infty}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right|$ is convergent And so it is absolutely convergent .

Therefore $\quad \sum_{i=1}^{\infty}\left|\left(x, e_{i}\right) \overline{\left(y, e_{i}\right)}\right| \leq\|x\| .\|y\|$.

END.

