e-content (lecture-30)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)

Topic: Problem in Hilbert space

Question: show that in a Hilbert space H an orthonormal set S is complete iff $x \perp S \Rightarrow x = 0$.

Solution: suppose that an orthonormal set S is complete and $x \perp S$.

Then to prove that x = 0 Let $x \neq 0$. Then $e = \frac{x}{\|x\|}$ is a unit vector such that $e \perp S$.

So $\{e, S\}$ is an orthonormal set properly containing S.

This contradicts that *S* is complete orthonormal set.

Hence we must have x = 0.

Conversely suppose that $x \perp S \Rightarrow x = 0$. then we have to prove that S is complete orthonormal set.

Suppose *S* is not complete orthonormal set.

Then there exists a unit vector e such that $\{e, S\}$ is an orthonormal set so we have $e \perp S$ then by hypothesis

e = 0 this is a contradiction since e is a unit vector >

Hence S must be complete .

Problem: If $\{e_i\}$ is an orthonormal set in a Hilberty space H, and if x, y are arbitrary vectors in H then

$$\sum_{i} |(x, e_i)\overline{(y, e_i)}| \le ||x|| \cdot ||y||$$

Solution: Let $S = \{e_i: (x, e_i) \overline{(y, e_i)} \neq 0\}$

Then *S* is either empty or countable . if *S* is empty then we have $(x, e_i)\overline{(y, e_i)} = 0$ for all *i*.

In this case we $0 = \sum_i |(x, e_i)\overline{(y, e_i)}| \le ||x|| \cdot ||y||$

if S is not empty Then S is either finite or countably infinite . If S is finite .then we can write

 $S = \{e_1, e_2 \dots e_n\}$ in this case

 $\sum_{i} |(x, e_i)\overline{(y, e_i)}| = \sum_{i=1}^{n} |(x, e_i)\overline{(y, e_i)}| \le ||x|| \cdot ||y|| \dots (1)$ [using Cauchy and Bessel inequality] If S is countably infinite . then we can write

 $S = \{e_1, e_2 \dots e_n \dots\} \text{ in this case}$ $\sum_i |(x, e_i)\overline{(y, e_i)}| = \sum_{i=1}^n |(x, e_i)\overline{(y, e_i)}|$ Since the inequality (1) is true for all n. So it must be true in the limit hence we have $\sum_{i=1}^\infty |(x, e_i)\overline{(y, e_i)}| \le ||x|| \cdot ||y|| \dots (2)$ From (2) we get $\sum_{i=1}^\infty |(x, e_i)\overline{(y, e_i)}|$ is convergent And so it is absolutely convergent .

Therefore $\sum_{i=1}^{\infty} |(x, e_i)\overline{(y, e_i)}| \le ||x|| \cdot ||y||$.

END.