e-content

by

Dr. ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University, Patna
SEMESTER - II

C C-09 (Topology)

Topic : Urysohn's lemma

Theorem : (Urysohn's lemma) : If A and B are disjoint closed subsets of a normal space X. Then there exists a continuous real function \boldsymbol{f} from X into $[0,1]$ such that $f(A)=\{0\}$ and $f(B)=\{1\}$.

Proof : Since A and B are disjoint, then $A \cap B=\emptyset$, So $A \subseteq B^{c}$. . Since B is closed, Hence B^{c} is an open set containing the closed set A, So there exists an open set $G_{\frac{1}{2}}$ such that $A \subseteq G_{\frac{1}{2}} \subseteq \bar{G}_{\frac{1}{2}} \subseteq B^{c}$ Now $\bar{G}_{\frac{1}{2}}$ is an open set containing the closed set A and B^{c} and B^{c} is an open set containing the closed set $\bar{G}_{\frac{1}{2}}$ So there exists open sets $G_{\frac{1}{4}}$, $G_{\frac{3}{4}}$ such that

$$
A \subseteq G_{\frac{1}{4}} \subseteq \bar{G}_{\frac{1}{4}} \subseteq G_{\frac{1}{2}} \subseteq \bar{G}_{\frac{1}{2}} \subseteq G_{\frac{3}{4}} \subseteq \bar{G}_{\frac{3}{4}} \subseteq B^{c}
$$

continuing this process for each dyadic rational number of the form $l=\frac{m}{2^{n}}$, (where $\mathrm{n}=1,2,3 \ldots \ldots$. and $\left.\mathrm{m}=1,2, \ldots ., 2^{n}-1\right)$ of $[0$, 1] we obtain an open set of the form G such that $r, s \in[0,1]$ with $r<s \Rightarrow A \subseteq G_{r} \subseteq \bar{G}_{r} \subseteq G_{s} \subseteq \bar{G}_{s} \subseteq B^{c}$, Let D be the set of all dyadic rational numbers in [0,1]

Now we define a function $f: X \rightarrow[0,1]$

$$
\text { by } \begin{aligned}
f(x) & =1 \text { if } x \in B \\
& =\inf \left\{r \in D: x \in G_{r}\right\} \text { if } x \notin B .
\end{aligned}
$$

if $x \in A$ then $x \in G_{r}$ for all $r \in D$

Hence, $f(x)=\inf D=0$

Therefore, $f(x)=0 \quad$ if $x \in A$

$$
=1 \quad \text { if } x \in B
$$

Thus $f(A)=\{0\}$ and $f(B)=\{1\}$
It remains to prove that f is continuous on X .

Since the intervals $[0, a[$ and $] \mathrm{b}, 1]$ (where $0<a, \mathrm{~b}<1$) form an open subbase for the subspace $[0,1]$ of the real line R.

It is sufficient to prove that

$$
f^{-1}\left(\left[0, a[) \text { and } f^{-1}(] b, 1\right]\right) \text { are open sets in } \mathrm{X}
$$

We have,
$0 \leq f(x)<a \quad$ iff $x \in G_{r}$ for some $r<a$

For if $x \in G_{r} \quad$ for some $r<a$, Then by the definition of infimum there exists some $r \in D$, such that $f(x) \leq r \leq a$ from which $x \in G_{r}$

Thus $f^{-1}([0, a[)=\{x \in G: 0 \leq f(x)<a\}$

$$
=U\left\{G_{r}: r \in D, r<a\right\}
$$

Thus $f^{-1}([0, a[)$ is open in X
Now we have to show that $\left.\left.f^{-1}(] b, 1\right]\right)$ is open in X

Since $\left.\left.f^{-1}(] b, 1\right]\right)=f^{-1}\left([0, b]^{c}\right)$
Now, We have,

$$
0 \leq f(x) \leq b \text { iff } x \in G_{r} \text { for all } r>b
$$

For if $x \in G_{r}$ for all $r>b$

Then $f(x) \leq r$ for all $r>b$, Then $f(x) \leq b$

Also if $f(x) \leq b$ Then $f(x)<r$

Hence

$$
\begin{align*}
f^{-1}([0, b]) & =\{x \in X: 0 \leq f(x) \leq b\} \\
& =\cap\left\{G_{r}: r \in D, r>b\right\} \tag{i}
\end{align*}
$$

Now for every $r>b$, there exists an $S \in D$ such that $r>s>b$ and hence $G_{r} \subseteq \bar{G}_{s}$

Consequently,

$$
\begin{align*}
\cap\left\{G_{r}: r\right. & \in D, r>b\}=\cap\left\{\bar{G}_{s}: s \in D, s>b\right\} \quad \ldots \ldots \ldots . .(\mathrm{i} \tag{ii}\\
\left.\left.f^{-1}(] b, 1\right]\right) & =\left[\cap\left\{\bar{G}_{s}: s \in D, s>b\right\}\right]^{c} \quad \text { (from (i) and (ii)) } \\
& =\cup\left\{\bar{G}_{s}^{c}: s \in D, s>b\right\}
\end{align*}
$$

Hence, $f^{-1}([b, 1])$ is an open set in X

Theorem : If A and B are disjoint closed subsets of a normal space X and $[a, b]$ be any closed and bounded interval on the real line R. Then, there exists a continuous function $f: X \rightarrow[a, b]$ such that $f(A)=\{a\}$ and $f(B)=\{b\}$

Proof: If $a=b$, then we define a function f on X by $f(x)=a$ for all $x \in X$, then the results holds.

If $a<b$, then by Urysohn's lemma, there exists a continuous real function $g: X \rightarrow[0,1]$ such that $g(A)=\{0\}$ and $g(B)=\{1\}$

Now we define a function f on X

$$
\begin{equation*}
\text { by } f(x)=(b-a) g(x)+a \text { for all } x \in X \tag{i}
\end{equation*}
$$

Since $0 \leq g(x) \leq 1$

$$
\begin{aligned}
& \Rightarrow(b-a) \cdot 0 \leq(b-a) \cdot g(x) \leq(b-a) .1 \\
& \Rightarrow 0 \leq(b-a) g(x) \leq b-a \\
& \Rightarrow 0+a \leq(b-a) g(x)+a \leq b-a+a \\
& \Rightarrow a \leq f(x) \leq b
\end{aligned}
$$

Thus f is a function from X to $[a, b]$

Again, since g is continuous so f is also continuous on X .

$$
\begin{aligned}
& \text { Now if } x \in A \Rightarrow g(x)=0 \\
& \\
& \qquad \begin{array}{l}
\Rightarrow f(x)=a \quad[\text { from (i) }] \\
\text { if } x \in B \Rightarrow g(x)=1 \\
\Rightarrow f(x)=b \quad[\text { from (i) }]
\end{array}
\end{aligned}
$$

Thus $f(A)=\{a\}$ and $f(B)=\{b\}$

It proves.

