e-content

by

Dr. ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University, Patna

SEMESTER – II

C C - 09 (Topology)

Topic : Urysohn's lemma

<u>Theorem</u>: (Urysohn's lemma) : If A and B are disjoint closed subsets of a normal space X. Then there exists a continuous real function f from X into [0, 1] such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

Proof : Since A and B are disjoint, then $A \cap B = \emptyset$, So $A \subseteq B^c$. . Since B is closed, Hence B^c is an open set containing the closed set A, So there exists an open set $G_{\frac{1}{2}}$ such that $A \subseteq G_{\frac{1}{2}} \subseteq \overline{G}_{\frac{1}{2}} \subseteq B^c$ Now $\overline{G}_{\frac{1}{2}}$ is an open set containing the closed set A and B^c and B^c is an open set containing the closed set $\overline{G}_{\frac{1}{2}}$ So there exists open sets $G_{\frac{1}{4}}$.

$$A \subseteq G_{\frac{1}{4}} \subseteq \overline{G}_{\frac{1}{4}} \subseteq G_{\frac{1}{2}} \subseteq \overline{G}_{\frac{1}{2}} \subseteq G_{\frac{3}{4}} \subseteq \overline{G}_{\frac{3}{4}} \subseteq B^{c}$$

continuing this process for each dyadic rational number of the form $l = \frac{m}{2^n}$, (where n = 1, 2, 3 ..., and m = 1, 2, ..., $2^n - 1$) of [0, 1] we obtain an open set of the form G such that $r, s \in [0,1]$ with $r < s \Rightarrow A \subseteq G_r \subseteq \overline{G_r} \subseteq G_s \subseteq \overline{G_s} \subseteq B^c$, Let D be the set of all dyadic rational numbers in [0,1]

Now we define a function $f : X \to [0, 1]$

by
$$f(x) = 1$$
 if $x \in B$
= inf $\{r \in D : x \in G_r\}$ if $x \notin B$

if $x \in A$ then $x \in G_r$ for all $r \in D$

Hence, $f(x) = \inf D = 0$

Therefore, f(x) = 0 if $x \in A$

$$= 1$$
 if $x \in B$

Thus $f(A) = \{0\}$ and $f(B) = \{1\}$

It remains to prove that f is continuous on X.

Since the intervals [0, a[and] b, 1] (where 0 < a, b < 1) form an open subbase for the subspace [0, 1] of the real line R.

It is sufficient to prove that

$$f^{-1}([0, a[) \text{ and } f^{-1}(]b, 1])$$
 are open sets in X

We have,

 $0 \le f(x) < a$ iff $x \in G_r$ for some r < a

For if $x \in G_r$ for some r < a, Then by the definition of infimum there exists some $r \in D$, such that $f(x) \le r \le a$ from which $x \in G_r$

Thus $f^{-1}([0, a[) = \{x \in G : 0 \le f(x) < a\})$

$$= U \{G_r : r \in D, r < a\}$$

Thus $f^{-1}([0, a[)])$ is open in X

Now we have to show that $f^{-1}(]b, 1]$ is open in X

Since $f^{-1}(]b,1]) = f^{-1}([0, b]^c)$

Now, We have,

 $0 \le f(x) \le b$ iff $x \in G_r$ for all r > b.

For if $x \in G_r$ for all r > b

Then $f(x) \le r$ for all r > b, Then $f(x) \le b$

Also if $f(x) \le b$ Then f(x) < r

Hence

$$f^{-1}([0,b]) = \{x \in X : 0 \le f(x) \le b\}$$
$$= \cap \{G_r : r \in D, r > b\} \quad \dots \dots \dots (i)$$

Now for every r > b, there exists an $S \in D$ such that r > s > band hence $G_r \subseteq \overline{G}_s$

Consequently,

$$\cap \{G_r : r \in D, r > b\} = \cap \{\overline{G}_s : s \in D, s > b\}$$
.....(ii)
$$f^{-1}(]b,1]) = [\cap \{\overline{G}_s : s \in D, s > b\}]^c$$
(from (i) and (ii))
$$= \cup \{\overline{G}_s^c : s \in D, s > b\}$$

Hence, $f^{-1}(] b, 1]$ is an open set in X

It proves

Theorem : If A and B are disjoint closed subsets of a normal space X and [a, b] be any closed and bounded interval on the real line R. Then, there exists a continuous function $f: X \to [a, b]$ such that $f(A) = \{a\}$ and $f(B) = \{b\}$

Proof : If a = b, then we define a function f on X by f(x) = a for all $x \in X$, then the results holds.

If a < b, then by Urysohn's lemma, there exists a continuous real function $g: X \to [0, 1]$ such that $g(A) = \{0\}$ and $g(B) = \{1\}$

Now we define a function f on X

by f(x) = (b - a) g(x) + a for all $x \in X$ (i)

Since $0 \le g(x) \le 1$

$$\Rightarrow (b-a) \cdot 0 \le (b-a) \cdot g(x) \le (b-a) \cdot 1$$
$$\Rightarrow 0 \le (b-a) \cdot g(x) \le b-a$$
$$\Rightarrow 0+a \le (b-a) \cdot g(x) + a \le b-a+a$$
$$\Rightarrow a \le f(x) \le b$$

Thus f is a function from X to [a, b]

Again, since g is continuous so f is also continuous on X.

Now if
$$x \in A \Rightarrow g(x) = 0$$

 $\Rightarrow f(x) = a \text{ [from (i)]}$
if $x \in B \Rightarrow g(x) = 1$
 $\Rightarrow f(x) = b \text{ [from (i)]}$
Thus $f(A) = \{a\}$ and $f(B) = \{b\}$

It proves.