Multibody dynamics

- Human and animal motion
- Robotics control
- Hair
- Plants
- Molecular motion

• Generalized coordinates

- Virtual work and generalized forces
- Lagrangian dynamics for mass points
- Lagrangian dynamics for a rigid body
- Lagrangian dynamics for a multibody system
- Forward and inverse dynamics

Representations

Assuming there are m links and n DOFs in the articulated body, how many constraints do we need to keep links connected correctly in maximal coordinates?

Maximal coordinates

- Direct extension of well understood rigid body dynamics; easy to understand and implement
- Operate in Cartesian space; hard to
 - evaluate joint angles and velocities
 - enforce joint limits
 - apply internal joint torques
- Inaccuracy in numeric integration can cause body parts to drift apart

Generalized coordinates

- Joint space is more intuitive when dealing with complex multibody structures
- Fewer DOFs and fewer constraints
- Hard to derive the equation of motion

Generalized coordinates

• Generalized coordinates are independent and completely determine the location and orientation of each body

Peaucellier mechanism

- The purpose of this mechanism is to generate a straight-line motion
- This mechanism has seven bodies and yet the number of degrees of freedom is one

- Generalized coordinates
- Virtual work and generalized forces
- Lagrangian dynamics for mass points
- Lagrangian dynamics for a rigid body
- Lagrangian dynamics for a multibody system
- Forward and inverse dynamics

Virtual work

Represent a point \mathbf{r}_i on the articulated body system by a set of generalized coordinates:

$$\mathbf{r}_i = \mathbf{r}_i(q_1, q_2, \dots, q_n)$$

The virtual displacement of \mathbf{r}_i can be written in terms of generalized coordinates

$$\delta \mathbf{r}_i = \frac{\partial \mathbf{r}_i}{\partial q_1} \delta q_1 + \frac{\partial \mathbf{r}_i}{\partial q_2} \delta q_2 + \ldots + \frac{\partial \mathbf{r}_i}{\partial q_n} \delta q_n$$

The virtual work of force \mathbf{F}_i acting on \mathbf{r}_i is

$$\mathbf{F}_i \delta \mathbf{r}_i = \mathbf{F}_i \sum_j \frac{\partial \mathbf{r}_i}{\partial q_j} \delta q_j$$

Generalized forces

Define generalized force associated with coordinate q_j

$$Q_j = \mathbf{F}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j}$$

virtual work = $\sum_j Q_j \delta q_j$

Consider a hinge joint theta. Which one has zero generalized force in theta?

- Generalized coordinates
- Virtual work and generalized forces

• Lagrangian dynamics for mass points

- Lagrangian dynamics for a rigid body
- Lagrangian dynamics for a multibody system
- Forward and inverse dynamics

D'Alembert's principle

• Consider one particle in generalized coordinates under some applied force

$$\mathbf{r}_i$$
 $\mathbf{r}_i = \mathbf{r}_i(q_1, q_2, \dots, q_{n_j}, t)$

• Applied force and inertia force are balanced along any virtual displacement

$$\delta W_i = \mathbf{f}_i \cdot \delta \mathbf{r}_i = \mu_i \ddot{\mathbf{r}}_i \cdot \delta \mathbf{r}_i = \sum_j \mu_i \ddot{\mathbf{r}}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \delta q_j$$

Lagrangian dynamics

$$\frac{d}{dt} \left(\frac{\partial T_i}{\partial \dot{q}_j} \right) - \frac{\partial T_i}{\partial q_j} - Q_{ij} = 0$$

- Equations of motion for one mass point in one generalized coordinate
- T_i : Kinetic energy of mass point \mathbf{r}_i
- Q_{ij} : Applied force \mathbf{f}_i projected in generalized coordinate q_j
- For a system with *n* generalized coordinates, there are *n* such equations, each of which governs the motion of one generalized coordinate

Vector form

• We can combine *n* scalar equations into the vector form

 $M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{Q}$

• Mass matrix: $M(\mathbf{q}) = \sum_{i} \mu J_{i}^{T} J_{i}$

• Coriolis and centrifugal force: $C = \dot{M}\dot{\mathbf{q}} - \frac{1}{2}\left(\frac{\partial M}{\partial \mathbf{q}}\dot{\mathbf{q}}\right)^T\dot{\mathbf{q}}$

- Generalized coordinates
- Virtual work and generalized forces
- Lagrangian dynamics for mass points
- Lagrangian dynamics for a rigid body
- Lagrangian dynamics for a multibody system
- Forward and inverse dynamics

Newton-Euler equations

- There are infinitely many points contained in each rigid body, how do we derive Lagrange's equations of motion?
- Start out with familiar Newton-Euler equations

$$\begin{pmatrix} m\mathbf{I}_3 & \mathbf{0} \\ \mathbf{0} & I_c \end{pmatrix} \begin{pmatrix} \dot{\mathbf{v}} \\ \dot{\boldsymbol{\omega}} \end{pmatrix} + \begin{pmatrix} \mathbf{0} \\ \boldsymbol{\omega} \times I_c \boldsymbol{\omega} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{pmatrix}$$

• Newton-Euler describes how linear and angular velocity of a rigid body change over time under applied force and torque

Jacobian matrix

- To express in Lagrangian formulation, we need to convert velocity in Cartesian coordinates to generalized coordinates
- Define linear Jacobian, J_v

$$\mathbf{v} = \dot{\mathbf{x}}(\mathbf{q}) = \frac{\partial \mathbf{x}}{\partial \mathbf{q}} \dot{\mathbf{q}} \equiv J_v \dot{\mathbf{q}}$$

• Define angular Jacobian, J_{ω}

$$\boldsymbol{\omega} = J_{\boldsymbol{\omega}} \dot{\mathbf{q}}$$

where
$$[\boldsymbol{\omega}] = \dot{R}(\mathbf{q})R^{T}(\mathbf{q})$$

$$= \sum_{j} \frac{\partial R}{\partial q_{j}}R^{T}\dot{q}_{j} \equiv \sum_{j} [\mathbf{j}_{j}]\dot{q}_{j}$$

Quiz

$$\mathbf{v} = \dot{\mathbf{x}}(\mathbf{q}) = \frac{\partial \mathbf{x}}{\partial \mathbf{q}} \dot{\mathbf{q}} \equiv J_v \dot{\mathbf{q}}$$

What is the dimension of the Jacobian?

Which elements in the Jacobian are zero?

Lagrangian dynamics

• Substitute Cartesian velocity with generalized velocity in Newton-Euler equations using Jacobian matrices

$$M_{c}(\dot{J}\dot{\mathbf{q}}) + \begin{pmatrix} \mathbf{0} \\ (J_{\omega}\dot{\mathbf{q}}) \times I_{c}J_{\omega}\dot{\mathbf{q}} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{pmatrix}$$
$$\Rightarrow M_{c}J\ddot{\mathbf{q}} + M_{c}\dot{J}\dot{\mathbf{q}} + [\tilde{\omega}]M_{c}J\dot{\mathbf{q}} = \begin{pmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{pmatrix}$$
$$\text{where,} \quad [\tilde{\omega}] = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & [J_{\omega}\dot{\mathbf{q}}] \end{pmatrix}$$

Lagrangian dynamics

• Projecting into generalized coordinates by multiplying Jacobian transpose on both sides

$$(J^T M_c J) \ddot{\mathbf{q}} + (J^T M_c \dot{J} + J^T [\tilde{\boldsymbol{\omega}}] M_c J) \dot{\mathbf{q}} = J_v^T \mathbf{f} + J_{\omega}^T \boldsymbol{\tau}$$

• This equation is exactly the vector form of Lagrange's equations of motion

$$M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{Q}$$

where,
$$M(\mathbf{q}) = J^T M_c J$$

 $C(\mathbf{q}, \dot{\mathbf{q}}) = (J^T M_c \dot{J} + J^T [\tilde{\boldsymbol{\omega}}] M_c J) \dot{\mathbf{q}}$
 $\mathbf{Q} = J_v^T \mathbf{f} + J_{\boldsymbol{\omega}}^T \boldsymbol{\tau}$

- Generalized coordinates
- Virtual work and generalized forces
- Lagrangian dynamics for mass points
- Lagrangian dynamics for a rigid body
- Lagrangian dynamics for a multibody system
- Forward and inverse dynamics

Multibody dynamics

• Once Newton-Euler equations are expressed in generalized coordinates, multibody dynamics is a straightforward extension of a single rigid body

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial T}{\partial \mathbf{q}} = \sum_{k} \left(\frac{d}{dt} \left(\frac{\partial T_{k}}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial T_{k}}{\partial \mathbf{q}} \right)$$
$$= \sum_{k} \left(J_{k}^{T} M_{ck} J_{k} \right) \ddot{\mathbf{q}} + \sum_{k} \left(J_{k}^{T} M_{ck} \dot{J}_{k} + J_{k}^{T} [\tilde{\boldsymbol{\omega}}_{k}] M_{ck} J_{k} \right) \dot{\mathbf{q}}$$

• The only tricky part is to compute Jacobian in a hierarchical multibody system

Notations

- p(k) returns index of parent link of link k
- n(k) returns number of
 DOFs in joint that connects
 link k to parent link p(k)
- *R_k* is local rotation matrix for link *k* and depends only on DOFs **q**_k
- *R*⁰_k is transformation chain from world to local frame of link k

Jacobian for each link

- Define a Jacobian for each rigid link that relates its Cartesian velocity to generalized velocity of entire system
- Define linear Jacobian for link k $\mathbf{v}_k = J_{vk}\dot{\mathbf{q}}, \text{ where } J_{vk} = \frac{\partial \mathbf{x}_k}{\partial \mathbf{q}} = \frac{\partial W_k^0 \mathbf{c}_k}{\partial \mathbf{q}}$
- Define angular Jacobian for link *k*

$$\omega_k = \omega_{p(k)} + R^0_{p(k)} \hat{J}_{\omega k} \dot{\mathbf{q}}_k \equiv J_{\omega k} \dot{\mathbf{q}}$$

where
$$J_{\omega k} = \left(\hat{J}_{\omega 1} \quad \dots \quad R^0_{p(l)}\hat{J}_{\omega l} \quad \dots \quad 0 \quad \dots\right)$$

- Generalized coordinates
- Virtual work and generalized forces
- Lagrangian dynamics for mass points
- Lagrangian dynamics for a rigid body
- Lagrangian dynamics for a multibody system
- Forward and inverse dynamics

Forward vs inverse dynamics

• Same equations of motion can solve two problems

 $M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{Q}$

- Forward dynamics $\ddot{\mathbf{q}} = -M(\mathbf{q})^{-1}(C(\mathbf{q},\dot{\mathbf{q}}) \mathbf{Q})$
 - given a set of forces and torques on the joints, calculate the motion
- Inverse dynamics $\mathbf{Q} = M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}})$
 - given a description of motion, calculate the forces and torques that give rise to it

- Which problem is inverse dynamics?
 - Given the current state of a robotic arm, compute its next state under gravity.
 - Given desired joint angle trajectories for a robotic arm, compute the joint torques required to achieve the trajectories.
 - Given the desired position for a point on a robotic arm, compute the joint angles of the arm to achieve the position.