Multibody dynamics




Applications

¢ Human and animal motion

e Robotics control
e Hair
e Plants

e Molecular motion












e Virtual work and generalized forces

e [Lagrangian dynamics for mass points
e Lagrangian dynamics for a rigid body
e Lagrangian dynamics for a multibody system

e Forward and inverse dynamics



Representations

Maximal coordinates Generalized coordinates
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Assuming there are m links and n DOFs in the articulated body, how
many constraints do we need to keep links connected correctly in
maximal coordinates?



Maximal coordinates

e Direct extension of well understood rigid body dynamics; easy
to understand and implement

e (Operate 1in Cartesian space; hard to
¢ cvaluate joint angles and velocities
e cenforce joint limits
e apply internal joint torques

e [naccuracy in numeric integration can cause body parts to drift
apart



Generalized coordinates

e Joint space 1s more intuitive when dealing with complex multi-
body structures

e Fewer DOFs and fewer constraints

e Hard to derive the equation of motion



Generalized coordinates

e (Generalized coordinates are independent and completely
determine the location and orientation of each body

one particle: o IT,U,%

one rigid body: '337%2397@1?

articulated bodies: T,Y, 25 0o, o, %o




Peaucellier mechanism

® The purpose of this mechanism
1s to generate a straight-line
motion

¢ This mechanism has seven
bodies and yet the number of
degrees of freedom 1s one




e (Generalized coordinates

e [agrangian dynamics for mass points

e Lagrangian dynamics for a rigid body
e Lagrangian dynamics for a multibody system

e Forward and inverse dynamics



Virtual work

Represent a point r; on the articulated body system by a set of
generalized coordinates:
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The virtual displacement of r; can be written in terms of
generalized coordinates
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The virtual work of force F; acting on r; is
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Generalized forces

Define generalized force associated with coordinate qj
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Example: 91 X



Consider a hinge joint theta. Which one has zero
generalized force 1n theta?

(A) (B) (€) (D)




e (Generalized coordinates

e Virtual work and generalized forces

e Lagrangian dynamics for a rigid body
e Lagrangian dynamics for a multibody system

e Forward and inverse dynamics



D’Alembert’s principle

e (Consider one particle in generalized coordinates under some
applied force

e Applied force and inertia force are balanced along any virtual
displacement
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Lagrangian dynamics
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e Equations of motion for one mass point in one generalized
coordinate

e T7:: Kinetic energy of mass point r;

e ();: Applied force f; projected 1in generalized coordinate g;

e For a system with n generalized coordinates, there are n such
equations, each of which governs the motion of one
generalized coordinate



e We can combine # scalar equations into the vector form

M(q)q+C(q,q) =Q

e Mass matrix: M(q) =, pJI J;

, T
* Coriolis and centrifugal force: C = Mq— 3 (%—‘gd) q



e (Generalized coordinates
e Virtual work and generalized forces

e [agrangian dynamics for mass points

e Lagrangian dynamics for a multibody system

e Forward and inverse dynamics



Newton-Euler equations

There are infinitely many points contained in each rigid body,
how do we derive Lagrange’s equations of motion?

Start out with familiar Newton-Euler equations
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Newton-Euler describes how linear and angular velocity of a
rigid body change over time under applied force and torque



Jacobian matrix

e To express in Lagrangian formulation, we need to convert
velocity 1in Cartesian coordinates to generalized coordinates

¢ Define linear Jacobian, J,
ox .

v =X(q) = 9qd= J,q
® Define angular Jacobian, J,,
W = qu
where [w] = R(q)R'(q)
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What 1s the dimension of the Jacobian?

9 Which elements 1n the Jacobian are zero?

{4




Lagrangian dynamics

e Substitute Cartesian velocity with generalized velocity in
Newton-Euler equations using Jacobian matrices

M,(Jq) + ( (T 2 I.J.,q )
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where, [w] = (8 [Jgfl])



Lagrangian dynamics

® Projecting into generalized coordinates by multiplying
Jacobian transpose on both sides

(JTMT) &+ (JTMT + JT@MT ) = JTE+ JTr

e This equation 1s exactly the vector form of Lagrange’s
equations of motion

M(q)q+C(q,q) =Q

where, M(q) = J'M.J
Clq.q) = (JTM.J+ JT[@]M.J)q
Q = Jt+Jlr



e (Generalized coordinates
e Virtual work and generalized forces

e [agrangian dynamics for mass points

e Lagrangian dynamics for a rigid body

e Forward and inverse dynamics



Multibody dynamics

¢ Once Newton-Euler equations are expressed in generalized
coordinates, multibody dynamics 1s a straightforward extension
of a single rigid body
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¢ The only tricky part 1s to compute Jacobian in a hierarchical
multibody system



e p(k) returns index of parent
link of link &

¢ (k) returns number of
DOFs 1n joint that connects
link £ to parent link p(k)

® Ry 1s local rotation matrix
for link £ and depends only
on DOFs qx

e RY. 1is transformation chain

from world to local frame of
link &
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' universal joint

‘ hinge joint



Jacobian for each link

e Define a Jacobian for each rigid link that relates its Cartesian
velocity to generalized velocity of entire system

e Define linear Jacobian for link &

- oxr  OW)
Vi = Jo, where Jyp = —b = —— k Ck
dq dq

e Define angular Jacobian for link 4

Wi = wp(k)+R2(k)jwqu = Jurq
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. universal joint

. hinge joint
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e (Generalized coordinates
e Virtual work and generalized forces
e [agrangian dynamics for mass points

e Lagrangian dynamics for a rigid body

e Lagrangian dynamics for a multibody system




Forward vs inverse dynamics

e Same equations of motion can solve two problems

M(q)q+ C(q,9) = Q

e Forward dynamics § = —M(q)” " (C(q,q) — Q)

e given a set of forces and torques on the joints, calculate the
motion

o Inverse dynamics Q = M(q)q+ C(q,q)

e given a description of motion, calculate the forces and
torques that give rise to 1t



¢ Which problem is inverse dynamics?

e (i1ven the current state of a robotic arm, compute 1ts next
state under gravity.

e (Given desired joint angle trajectories for a robotic arm,
compute the joint torques required to achieve the
trajectories.

e (i1ven the desired position for a point on a robotic arm,
compute the joint angles of the arm to achieve the position.



