M.S c Mathematics -SEM 3 Functional Analysis- CC-11

E-content -Dr Abhik Singh,

Guest faculty, PG Department of Mathematics, Patna University, Patna.

Theorem

Let M be a closed linear subspace

of a normed linear space E. If the

norm of a coset $[x]=x+M$ in the

quotient space E / M is defined by

$$
\|x+M\|=\inf \{\|x+v\|: v \in M\}
$$

Then E / M is a normed linear
space.Further, if E is a Banach space, then E / M is also a banach space.

Proof

Clearly ||x+M|| is well-defined and ||x+ $M|\mid \geq 0$.

Since $0 \in M$,it is clear that if $x+M=M$, the zeros vector in E / M then

$$
\|x+M\|=\|M\|=\inf _{v \in M}\|v\|=0
$$

If $\|x+M\|=0$, then from the definition of the norm as an infimum, there exists a sequence (z_{n}) of points of M such that

$$
\lim _{n \rightarrow \infty}\left\|x+z_{n}\right\|=\|x+M\|=0
$$

Hence $x+z_{n} \rightarrow 0$ or $z_{n} \rightarrow-x$, Since M is closed, $-x \in M$, hence $x \in M$ and therefore ,$x+M=M$, the zero vector of E / M.

Thus $\|x+M\|=0$ iff $x+M=$ M, the zero vector of E / M. Next, let a be any scalar. Then
$\|a x+M\|$

$$
=\inf _{v \in M}\|a x+v\|=\inf _{v \in M}\|a x+a v\|
$$

Provided $\boldsymbol{a} \neq \mathbf{0}$ (the result being trivially obtained when $a=0$)

Hence

$$
\begin{aligned}
\| a x+ & M \| \\
& =|a| \inf _{v \in M}\|x+v\|=|a| \cdot\|x+M\|
\end{aligned}
$$

Thus $\|a[x]\|=|a| \cdot| |[x]| |$
Finally, let $\boldsymbol{x}+\boldsymbol{M} . \boldsymbol{Y}+\boldsymbol{M} \in \boldsymbol{E} / \boldsymbol{M}$.Then

$$
\begin{gathered}
(x+M)+(y+M)=(x+y)+M \\
\|(x+M)+(y+M)\|=\|x+y+M\|
\end{gathered}
$$

But since $|\mid x+y+M \|$ has been defined as an infimum, so there exist sequences (z_{n}) and (w_{n}) of points of M such that |

$$
\operatorname{Lim}_{n \rightarrow \infty}\left\|x+z_{n}\right\|=\|x+M\|
$$

And $\lim _{n \rightarrow \infty}\left\|y+w_{n}\right\|=\|y+M\|$

Thus $\|[x]+[y]\| \leq\|[x]\|+\|[y]\|$
Therefore E / M is a normed linear space.
Now let E be a Banach space . Then we prove that E / M is a Banach space

For this we start with a Cauchy sequence,in E/M.

Since it is assumed to be a Cauchy sequence, if a convergent subsequence of the sequence can be extracted, it follows that the entire sequence must converge to the same limit as the subsequence. It is clearly possible to find a subsequence $\left(x_{n}+M\right)$ of the original Cauchy sequence such that

$$
\begin{gathered}
\left\|\left(x_{1}+M\right)-\left(x_{2}+M\right)\right\|<\frac{1}{2} \\
\left\|\left(x_{2}+M\right)-\left(x_{3}+M\right)\right\|<\frac{1}{4^{\prime}} \text { and in general } \\
\left\|\left(x_{n}+M\right)-\left(x_{n+1}+M\right)\right\|<\frac{1}{2^{n}}
\end{gathered}
$$

We prove that this sequence is convergent in E/M.

We take any $y_{1} \in x_{1}+M$ and $y_{2} \in x_{2}+M$ such that $\left\|y_{1}-y_{2}\right\|<\frac{1}{2}$.

Again we select y_{3} in $x_{3}+M$ such that

$$
\left\|y_{n}-y_{n+1}\right\|<\frac{1}{2^{n}}
$$

If $<\boldsymbol{n}$, then

$$
\begin{aligned}
& \left\|y_{m}-y_{n}\right\| \\
& \quad \leq\left\|y_{m}-y_{m+1}\right\|+\left\|y_{m+1}-y_{m+2}\right\| \\
& \quad+\cdots \ldots \ldots \ldots\left\|y_{n-1}-y_{n}\right\| \\
& \quad<\frac{1}{2^{m}}+\frac{1}{2^{m+1}}+\cdots \ldots .+\frac{1}{2^{n-1}} \\
& \quad<\frac{1}{2^{m-1}}
\end{aligned}
$$

Hence $\left(y_{n}\right)$ is a Cauchy sequence in E . E is complete ,there exists $y \in E$ such that $y_{\boldsymbol{n}} \rightarrow$ y.

Now $\left|\left|\left(x_{n}+M\right)-(y+M)\right|\right| \leq\left|y_{n}-y\right|$

Hence $x_{n}+M \rightarrow y+M \in E / M$
Therefore , E / M is complete. Hence $\frac{E}{M}$ is a Banach space.

Hence

