e-content (lecture-26)

by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)

Topic: Problem on projections

Theorem: If P and Q are the projections on closed linear subspaces M and N of H. Then prove that $Q-P$ is a projection $\Leftrightarrow P \leq Q$. In this case show that $Q-P$ is the projection on $N \cap M^{\perp}$.

Proof: Since P and Q are the projections on the Hilbert space H. So $P^{2}=P, P^{*}=P, Q^{2}=Q, Q^{*}=Q$.

Now suppose that $Q-P$ is a projection on H.
To prove $P \leq Q$.
Since $Q-P$ is a projection on H. So $Q-P$ is a positive operator on H.
so we have $Q-P \geq 0 \Rightarrow P \leq Q$.
Conversely suppose that $P \leq Q$.
To prove $Q-P$ is a projection on H.

$$
(Q-P)^{*}=Q^{*}-P^{*}=Q-P
$$

And $\quad(Q-P)^{2}=(Q-P)(Q-P)$

$$
\begin{aligned}
& =Q^{2}-Q P-P Q+P^{2} \\
& =Q-P-P+P \\
& =Q-P
\end{aligned}
$$

Hence $Q-P$ is a projection on H.
It remains to prove that $Q-P$ is the projection on $N \cap$ M^{\perp}.
i.e the range of $Q-P$ is $N \cap M^{\perp}$.

Let R be the range of $Q-P$. To prove that $R=N \cap M^{\perp}$.

$$
\text { Let } x \in N \cap M^{\perp} \Rightarrow x \in \text { Nand } x \in M^{\perp}
$$

$\operatorname{Now}(Q-P)(x)=Q x-P x$

$$
\begin{gathered}
=x-P x \\
=x-0=x
\end{gathered}
$$

$$
\begin{equation*}
\Rightarrow x \in R .[\text { Since }(Q-P)(x) \in R] \tag{1}
\end{equation*}
$$

So $N \cap M^{\perp} \subseteq R$.
Again let $x \in R$ then $(Q-P)(x)=x$

$$
\begin{aligned}
& \Rightarrow Q[(Q-P)] x=Q x \\
& \Rightarrow\left(Q^{2}\right) x-Q P x=Q x \\
& \Rightarrow Q x-P x=Q x \\
& \Rightarrow(Q-P)(x)=Q x \\
& \Rightarrow x=Q x \\
& \Rightarrow x \in N .
\end{aligned}
$$

Again $(Q-P)(x)=x$

$$
\begin{aligned}
& \Rightarrow P[(Q-P)] x=P x \\
& \Rightarrow P Q x-\left(P^{2}\right) x=P x \\
& \Rightarrow P x-P x=P x \\
& \Rightarrow(Q-P)(x)=Q x \\
& \Rightarrow P x=0 \\
& \Rightarrow x \in M^{\perp} .
\end{aligned}
$$

Hence $x \in N \cap M^{\perp}$.

From (1) and (2) we get $R=N \cap M^{\perp}$
Hence $Q-P$ is the projection on $N \cap M^{\perp}$.

END.

