e-content (lecture-26)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)

Topic: Problem on projections

Theorem: If *P* and *Q* are the projections on closed linear

subspaces M and N of H. Then prove that

Q - P is a projection $\Leftrightarrow P \leq Q$. In this case show that

Q - P is the projection on $N \cap M^{\perp}$.

Proof: Since P and Q are the projections on the Hilbert space H. So $P^2 = P, P^* = P, Q^2 = Q, Q^* = Q$.

Now suppose that Q - P is a projection on H.

To prove $P \leq Q$.

Since Q - P is a projection on H. So Q - P is a positive operator on H.

so we have $Q - P \ge 0 \Rightarrow P \le Q$.

Conversely suppose that $P \leq Q$.

To prove Q - P is a projection on H.

$$(Q - P)^* = Q^* - P^* = Q - P$$

And
$$(Q - P)^2 = (Q - P)(Q - P)$$
$$= Q^2 - QP - PQ + P^2$$
$$= Q - P - P + P$$
$$= Q - P$$

Hence Q - P is a projection on H.

It remains to prove that Q - P is the projection on $N \cap M^{\perp}$.

i.e the range of Q - P is $N \cap M^{\perp}$.

Let R be the range of Q - P. To prove that $R = N \cap M^{\perp}$.

Let $x \in N \cap M^{\perp} \Rightarrow x \in Nand \ x \in M^{\perp}$

Now (Q - P)(x) = Qx - Px

$$= x - Px$$
$$= x - 0 = x$$

$$\Rightarrow x \in R. [Since (Q - P)(x) \in R]$$

So $N \cap M^{\perp} \subseteq R$(1)
Again let $x \in R$ then $(Q - P)(x) = x$
 $\Rightarrow Q[(Q - P)]x = Qx$
 $\Rightarrow (Q^{2})x - QPx = Qx$
 $\Rightarrow Qx - Px = Qx$
 $\Rightarrow Qx - Px = Qx$
 $\Rightarrow (Q - P)(x) = Qx$
 $\Rightarrow x \in N.$

Again (Q - P)(x) = x $\Rightarrow P[(Q - P)]x = Px$ $\Rightarrow PQx - (P^2)x = Px$ $\Rightarrow Px - Px = Px$ $\Rightarrow (Q - P)(x) = Qx$ $\Rightarrow Px = 0$ $\Rightarrow x \in M^{\perp}$.

Hence $x \in N \cap M^{\perp}$.

So $R \subseteq N \cap M^{\perp}$(2) From (1) and (2) we get $R = N \cap M^{\perp}$

Hence Q - P is the projection on $N \cap M^{\perp}$.

END.