PDE : (M.Sc. Sem-II) By : Dr. Loknath Rai Prof. and Head of Mathematics Patna University, Patna

Email : loknathrai7@gmail.com Call : 9006632911

COUNTOUR INTEGRATION

In this lession basically we will put up our concentration on Contour Integration and some fundamentals about Path integration Cauchy's integral formula etc.

1.1 Contour Integration :- It is a method of evaluating certain integral along a path in the complex plane.

The countour integration is directly result of residues which is very popular in complex analysis.

➔ The contour integration is very helpful in evulating of integrals along the real line that are not readily found by using the only real variable calculus.

● Now, here our aim is to discuss :

Three types of integrations :

(a) Direct integration of a complex – valued function along a curve in complex plane.

(b) Application of the Cauchy integral formula.

(c) Application of the residue theorem.

1.2 Curve in complex plane :– A curve is nothing but of continuous function from a closed interval of the real line to the complex plane.

$$\gamma:[a,b]\to C$$

Note : The curve in complex plane. We also defined it by the technique of parametrization from a closed interval in which parameter is allowed to vary.

1.3 Contour :- A contour is a class of piecewise smooth curves that gives a new curve (Contour) that is if γ_i for γ_i for $1 \le i \le n$ are curves such that end point of γ_i is beginning of γ_{i+1} we then define $\gamma_1 + \gamma_2 + \dots + \gamma_n$ as a contour and denote it by Γ .

Hence

$$\Gamma = \gamma_1 + \gamma_2 + \dots + \gamma_n$$

1.4 Contour Integrals :– In general the contour integral is the sum of integrals over the directed smooth curve (γ_i) that making the contour.

i.e.
$$\int_{\Gamma} f = \int_{\gamma_2} f + \dots + \int_{\gamma_n} f \dots e_1$$

\bigcirc Integral of complex-valued function over an interval [a, b]

Let $f:[a, b] \rightarrow C$ defined by

$$f(t) = u(t) + i\upsilon(t)$$

where

$$u(t)$$
 = Real part of $f(t)$
 $v(t)$ = Imaginary part of $f(t)$

Also u(t) and v(t) are continuous functions on [a, b]

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt \qquad \dots e_{2}$$

Moreover

Let $f: c \to c$ be a continuous function on directed smooth curve γ and let z is coming from γ then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \qquad \dots e_{3}$$

The definition given in e_3 is well defined.

Example : Evaluate $\int_{|z|=1}^{1} \frac{1}{z} dz$

Solution : Here γ is a unit circle whose parametrisation is as.

$$z = \gamma(t) = e^{it}; t \in [0, 2\pi]$$

By e_3

$$\int_{|z|=1}^{1} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{e^{1t}} i e^{it} dt = i \int_{0}^{2\pi} dt = 2\pi i$$

Cauchy-Integral formula :

Let $f: U \to C$ where U is an open subset of complex plane C overwhich f is holomorphic and let γ is a boundary of small enough closed disk oriented in anti-clockwise direction contained in U. Then for every a belonging to interior of close disk.

We have

$$f^{n}(a) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} dz \qquad \text{(Cauchy's differentiation theorem)} \quad \dots \quad (e_{4})$$

Special case :

$$f(a) = \frac{1}{2\pi i} \int \frac{f(z)}{(z-a)} dz \text{ for } n = 0 \qquad \dots \qquad e_s$$

Residue theorem :

Let *T* be a simply connected open subset of complex plane. C containing a finite sequence of singular points a_1, a_2, \dots, a_n which are inclosed by the contour γ then integral

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} I(\gamma, a_k) \operatorname{Res}(f, a_k)$$

If winding number $I(\gamma, a_k) = 1$

then $\int_{\gamma} f(z) dz = 2\pi i \{ \text{sum of residues at } a_k; 1 \le k \le n \}$

Where γ is positively oriented simple closed curve.

Example : Evaluate $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$

Solution : The only singular point is at *i*,

consider; $\frac{1}{z^2+1} = \frac{1}{(z-i)^2(z+1)^2}$

Thus

 $\int_{-a}^{a} \frac{1}{z^{2}+1} dz = \int \frac{\overline{(z+i)^{2}}}{(z-i)^{2}} dz = \int \frac{f(z)}{(z-i)^{2}} dz - I_{1}$

$$I_{1} = \int_{Arc} \frac{f(z)}{z^{2} + 1} dz \qquad \text{where } f(z) = \frac{1}{(z+i)^{2}}$$

By using e_4 (Cauchy's differentiation theorem)

$$\int \frac{1}{z^2 + 1} dz = 2\pi i f'(1) = 2\pi i \left[\frac{-2}{(z+1)^3} \right]_{z=1}$$

$$=2\pi i \left[\frac{-2}{-8i}\right] = \frac{\pi}{2}$$

$$\Rightarrow \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{2} - \int_{Arc} \frac{f(z)}{z^2 + 1} dz = \frac{\pi}{2} \text{ as } \int \frac{f(z)}{z^2 + 1} dz \longrightarrow 0 \text{ as } a \to \infty$$

Aliter; (By Caucy's residue theorem)

Now,
$$\int_{-a}^{a} \frac{1}{z^2 + 1} dz = 2\pi i \{ \text{sum of residues} \}$$

Thus we have

$$\operatorname{Res}(f, i) = \frac{1}{4i}$$

Hence,

$$\int \frac{1}{z^2 + 1} dz = 2\pi i \frac{1}{4i} = \frac{\pi}{2} \qquad \dots e_6$$

On comparing real & imaginary part both sides in e_6

$$\Rightarrow \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{2}$$

Example (2) : Evaluate $\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2+1} dx$

Solution : Let us consider

$$\int_{C} \frac{e^{iz}}{z^2 + 1} dz \qquad \left(\because \frac{e^{iz}}{z^2 + 1} \text{ is entire function excepting at } z : z^2 + 1 = 0 \right)$$

the only singularity which contain the contour is z = i

Res
$$(f, i) = (z-i) \frac{e^{iz}}{(z-i)(z+1)}$$
 as $z \to i$

 $\operatorname{Res}\left(f,\,i\right) \!=\! \frac{e^{-1}}{2i}$

Now by Residue theorem

$$\int_{C} \frac{e^{iz}}{z^{2}+1} dz = \int_{-a}^{a} \frac{e^{iz}}{z^{2}+1} dz + \int_{Arc=\gamma} \frac{e^{iz}}{z^{2}+1} dz$$

But $\int_{-a}^{a} \frac{e^{iz}}{z^{2}+1} dz + \int_{Arc=\gamma} \frac{e^{iz}}{z^{2}+1} dz = 2\pi i \left(\frac{e^{-1}}{2i}\right) = \pi e^{-1}$

Also by ML Lemma (As $a \rightarrow \infty$)

We have

$$\left| \int_{Arc} \frac{e^{iz}}{z^2 + 1} dz \right| \le ML \to 0 \text{ (Do yourself)}$$

Where $M \to \max^{m} of |f(z)|$ on Arc γ

 $L \rightarrow$ Length of semicircle $\gamma = \pi a$

Hence $\int_{-a}^{a} \frac{e^{iz}}{z^2 + 1} dz = \pi e^{-1}$

Putting y = 0, both sides (i.e. comparing real parts)

and taking $a \rightarrow \infty$ We get

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 + 1} dx = \frac{\pi}{e}$$

Assignment :- Discuss the winding number of pole & integral with winding number greater than 1 of a function.