PDE : (M.Sc. Sem-II)
 By : Dr. Loknath Rai
 Prof. and Head of Mathematics
 Patna University, Patna

Email : loknathrai7@gmail.com

Call : 9006632911

COUNTOUR INTEGRATION

In this lession basically we will put up our concentration on Contour Integration and some fundamentals about Path integration Cauchy's integral formula etc.
1.1 Contour Integration :- It is a method of evaluating certain integral along a path in the complex plane.
The countour integration is directly result of residues which is very popular in complex analysis.

- The contour integration is very helpful in evulating of integrals along the real line that are not readily found by using the only real variable calculus.
© Now, here our aim is to discuss :
Three types of integrations :
(a) Direct integration of a complex - valued function along a curve in complex plane.
(b) Application of the Cauchy integral formula.
(c) Application of the residue theorem.
1.2 Curve in complex plane :- A curve is nothing but of continuous function from a closed interval of the real line to the complex plane.

$$
\gamma:[a, b] \rightarrow C
$$

Note : The curve in complex plane. We also defined it by the technique of parametrization from a closed interval in which parameter is allowed to vary.
1.3 Contour :- A contour is a class of piecewise smooth curves that gives a new curve (Contour) that is if γ_{i} for γ_{i} for $1 \leq i \leq n$ are curves such that end point of γ_{i} is begining of γ_{i+1} we then define $\gamma_{1}+\gamma_{2}+\ldots \ldots . \gamma_{n}$ as a contour and denote it by Γ.
Hence

$$
\Gamma=\gamma_{1}+\gamma_{2}+\ldots . .+\gamma_{n}
$$

1.4 Contour Integrals :- In general the contour integral is the sum of integrals over the directed smooth curve $\left(\gamma_{i}\right)$ that making the contour.
i.e. $\int_{\Gamma} f=\int_{\gamma_{2}} f+\ldots \ldots . .+\int_{\gamma_{n}} f \quad \ldots . e_{1}$
(Integral of comlpex-valued function over an interval $[a, b]$

Let $f:[a, b] \rightarrow C$
defined by

$$
f(t)=u(t)+i v(t)
$$

where

$$
\begin{aligned}
& u(t)=\text { Real part of } f(t) \\
& v(t)=\text { Imaginary part of } f(t)
\end{aligned}
$$

Also $u(t)$ and $v(t)$ are continuous functions on $[a, b]$

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t \tag{2}
\end{equation*}
$$

Moreover
Let $f: c \rightarrow c$ be a continuous function on directed smooth curve γ and let z is coming from γ then

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t \quad \ldots . . e_{3}
$$

The definition given in e_{3} is well defined.
Example : Evaluate $\int_{\mid z=1} \frac{1}{z} d z$
Solution : Here γ is a unit circle whose parametrisation is as.

$$
z=\gamma(t)=e^{i t} ; \quad t \in[0,2 \pi]
$$

By e_{3}

$$
\int_{\gamma \mid z=1} \frac{1}{z} d z=\int_{0}^{2 \pi} \frac{1}{e^{1 t}} i e^{i t} d t=i \int_{0}^{2 \pi} d t=2 \pi i
$$

Cauchy-Integral formula :

Let $f: U \rightarrow C$ where U is an open subset of complex plane C overwhich f is holomorphic and let γ is a boundary of small enough closed disk oriented in anti-clockwise direction contained in U. Then for every a belonging to interior of close disk.
We have
$f^{n}(a)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{(z-a)^{n+1}} d z$ (Cauchy's differentiation theorem) \qquad $\left(e_{4}\right)$

Special case :

$f(a)=\frac{1}{2 \pi i} \int \frac{f(z)}{(z-a)} d z$ for $n=0$

Residue theorem :

Let T be a simply connected open subset of complex plane. C containing a finite sequence of singular points $a_{1}, a_{2}, \ldots . a_{n}$ which are inclosed by the contour γ then integral

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{k=1}^{n} I\left(\gamma, a_{k}\right) \operatorname{Res}\left(f, a_{k}\right)
$$

If winding number $I\left(\gamma, a_{k}\right)=1$

then $\int_{\gamma} f(z) d z=2 \pi i\left\{\right.$ sum of residues at $\left.a_{k} ; 1 \leq k \leq n\right\}$
Where γ is positively oriented simple closed curve.
Example : Evaluate $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}$
Solution : The only singular point is at i, consider; $\frac{1}{z^{2}+1}=\frac{1}{(z-i)^{2}(z+1)^{2}}$

Thus

$$
\begin{aligned}
& \int_{-a}^{a} \frac{1}{z^{2}+1} d z=\int \frac{1}{(z+i)^{2}} \\
& (z-i)^{2}
\end{aligned} z=\int \frac{f(z)}{(z-i)^{2}} d z-I_{1} . \quad \text { where } f(z)=\frac{1}{(z+i)^{2}}
$$

By using e_{4} (Cauchy's differentiation theorem)

$$
\int \frac{1}{z^{2}+1} d z=2 \pi i f^{\prime}(1)=2 \pi i\left[\frac{-2}{(z+1)^{3}}\right]_{z=i}
$$

$$
\begin{gathered}
=2 \pi i\left[\frac{-2}{-8 i}\right]=\frac{\pi}{2} \\
\Rightarrow \int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x=\frac{\pi}{2}-\int_{A r c} \frac{f(z)}{z^{2}+1} d z=\frac{\pi}{2} \text { as } \int \frac{f(z)}{z^{2}+1} d z \longrightarrow 0 \text { as } a \rightarrow \infty
\end{gathered}
$$

Aliter; (By Caucy's residue theorem)
Now, $\int_{-a}^{a} \frac{1}{z^{2}+1} d z=2 \pi i\{$ sum of residues $\}$
Thus we have

$$
\operatorname{Res}(f, i)=\frac{1}{4 i}
$$

Hence,

$$
\begin{equation*}
\int \frac{1}{z^{2}+1} d z=2 \pi i \frac{1}{4 i}=\frac{\pi}{2} \tag{6}
\end{equation*}
$$

On comparing real \& imaginary part both sides in e_{6}
$\Rightarrow \int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x=\frac{\pi}{2}$
Example (2) : Evaluate $\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x$
Solution : Let us consider

$$
\int_{C} \frac{e^{i z}}{z^{2}+1} d z \quad\left(\because \frac{e^{i z}}{z^{2}+1} \text { is entire function excepting at } z: z^{2}+1=0\right)
$$

the only singularity which contain the contour is $z=i$

$\operatorname{Res}(f, i)=(z-i) \frac{e^{i z}}{(z-i)(z+1)}$ as $z \rightarrow i$
$\operatorname{Res}(f, i)=\frac{e^{-1}}{2 i}$

Now by Residue theorem

$$
\int_{C} \frac{e^{i z}}{z^{2}+1} d z=\int_{-a}^{a} \frac{e^{i z}}{z^{2}+1} d z+\int_{A r c=\gamma} \frac{e^{i z}}{z^{2}+1} d z
$$

But $\int_{-a}^{a} \frac{e^{i z}}{z^{2}+1} d z+\int_{A r c=\gamma} \frac{e^{i z}}{z^{2}+1} d z=2 \pi i\left(\frac{e^{-1}}{2 i}\right)=\pi e^{-1}$
Also by ML Lemma (As $a \rightarrow \infty$)
We have

$$
\left|\int_{A r c} \frac{e^{i z}}{z^{2}+1} d z\right| \leq M L \rightarrow 0(\text { Do yourself })
$$

Where $M \rightarrow \max ^{m}$ of $|f(z)|$ on $\operatorname{Arc} \gamma$

$$
L \rightarrow \text { Length of semicircle } \gamma=\pi a
$$

Hence $\int_{-a}^{a} \frac{e^{i z}}{z^{2}+1} d z=\pi e^{-1}$
Putting $y=0$, both sides (i.e. comparing real parts)
and taking $a \rightarrow \infty$
We get

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}+1} d x=\frac{\pi}{e}
$$

Assignment :- Discuss the winding number of pole \& integral with winding number greater than 1 of a function.

