e-content (lecture-23)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)

Topic: Theorem and problem on projection.

Theorem: If P is a projection a Hilbert space H, then

(1) P a positive operator i.e $P \ge O$.

(2) $0 \leq P \leq I$

 $(3) || Px || \le ||x|| \quad \forall x \in H.$

(4) $|| Px || \le 1$

Proof: It is given that *P* is a projection a Hilbert space *H* .Then $P^2 = P$ and $P^* = P$.

(1) Let x be any vector in H. Then

(Px, x) = (PPx, x)= $(Px, P^*x) = (Px, Px) = ||Px||^2 \ge 0 \quad \forall x \in H.$ Hence $(Px, x) \ge 0 \quad \forall x \in H$. So *P* a positive operator i.e $P \geq 0$.

(2) Since P is a projection a Hilbert space H therefore

I - P is also a projection a Hilbert space H Hence we have $I - P \ge O$ i.e $P \le I$. But $O \le P$. So $0 \leq P \leq I$.

(3) Let x be any vector in H. If M is the range of P.

Then M^{\perp} is the range of I - P.

Now $Px \in M$ and $I - Px \in M^{\perp}$. Hence Px and I - Pxare orthogonal vectors .So we have

$$|| Px + (I - P)x ||^{2} = || Px ||^{2} + || (I - P)x ||^{2}$$

$$\Rightarrow || x ||^{2} = || Px ||^{2} + || (I - P)x ||^{2}$$

$$\Rightarrow || x ||^{2} \ge || Px ||^{2}$$

$$\Rightarrow || Px || \le ||x|| \quad \forall \ x \in H.$$

(4) We have $|| P || = Sup\{ || Px ||: ||x|| \le 1\}.$ But we have $|| Px || \le ||x|| \quad \forall \ x \in H.$ Hence

 $Sup\{ || Px ||: ||x|| \le 1 \} \le 1 \Rightarrow || Px || \le 1.$

Problem: Show that an idempotent operator on a

Hilbert space *H* is a projection on *H* if and only if it is normal.

Solution: Let *P* is an idempotent operator on a Hilbert space *H* .So $P^2 = P$.

Let *P* be a projection on *H* . Then $P^* = P$.

We have $PP^* = P^*P^* = P^*P$ Hence *P* is normal.

Conversely Let $PP^* = P^*P$ To prove $P^* = P$

For any vector *x* in *H* we have

$$(Py, Py) = (y, P^*Py) = (y, PP^*y) = (P^*y, P^*y)$$

Let x be any vector in H. Let y = x - Px

Then Py = P(x - Px) = Px - PPx = Px - Px = 0

$$0 = P^* y = P^* (x - Px) = P^* x - P^* Px$$

$$P^*x = P^*Px \quad \forall x \in H \Rightarrow P^* = P^*P$$

 $P = (P^*)^* = (P^*P)^* = P^*P = P^*$.So P is self adjoint

and $P^2 = P$. Therefore *P* is a projection on *H*.

End