e-content (lecture-23)
by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)
Topic: Theorem and problem on projection.
Theorem: If P is a projection a Hilbert space H, then
(1) P a positive operator i.e $P \geq 0$.
(2) $O \leq P \leq I$
(3) $\|P x\| \leq\|x\| \quad \forall x \in H$.
(4) $\|P x\| \leq 1$

Proof: It is given that P is a projection a Hilbert space H .Then $P^{2}=P$ and $P^{*}=P$.
(1) Let x be any vector in H. Then

$$
\begin{gathered}
(P x, x)=(P P x, x) \\
=\left(P x, P^{*} x\right)=(P x, P x)=\|P x\|^{2} \geq 0 \quad \forall x \in H .
\end{gathered}
$$

Hence $(P x, x) \geq 0 \quad \forall x \in H$. So P a positive operator i.e $P \geq 0$.
(2) Since P is a projection a Hilbert space H therefore $I-P$ is also a projection a Hilbert space H Hence we have $I-P \geq O$ i.e $P \leq I$. But $O \leq P$. So $O \leq P \leq I$.
(3) Let x be any vector in H. If M is the range of P.

Then M^{\perp} is the range of $I-P$.
Now $P x \in M$ and $I-P x \in M^{\perp}$. Hence $P x$ and $I-P x$ are orthogonal vectors .So we have

$$
\begin{aligned}
& \|P x+(I-P) x\|^{2}=\|P x\|^{2}+\|(I-P) x\|^{2} \\
& \Rightarrow\|x\|^{2}=\|P x\|^{2}+\|(I-P) x\|^{2} \\
& \Rightarrow\|x\|^{2} \geq\|P x\|^{2} \\
& \Rightarrow\|P x\| \leq\|x\| \quad \forall x \in H .
\end{aligned}
$$

(4) We have $\|P\|=\operatorname{Sup}\{\|P x\|:\|x\| \leq 1\}$.But we have $\|P x\| \leq\|x\| \quad \forall x \in H$. Hence

$$
\operatorname{Sup}\{\|P x\|:\|x\| \leq 1\} \leq 1 \Rightarrow\|P x\| \leq 1
$$

Problem: Show that an idempotent operator on a
Hilbert space H is a projection on H if and only if it is normal.

Solution: Let P is an idempotent operator on a Hilbert space H.So $P^{2}=P$.

Let P be a projection on H.Then $P^{*}=P$.
We have $P P^{*}=P^{*} P^{*}=P^{*} P$ Hence P is normal.
Conversely Let $P P^{*}=P^{*} P$ To prove $P^{*}=P$
For any vector x in Hwe have

$$
(P y, P y)=\left(y, P^{*} P y\right)=\left(y, P P^{*} y\right)=\left(P^{*} y, P^{*} y\right)
$$

Let x be any vector in H. Let $y=x-P x$

$$
\text { Then } P y=P(x-P x)=P x-P P x=P x-P x=0
$$

$$
0=P^{*} y=P^{*}(x-P x)=P^{*} x-P^{*} P x
$$

$$
P^{*} x=P^{*} P x \quad \forall x \in H \Rightarrow P^{*}=P^{*} P
$$

$P=\left(P^{*}\right)^{*}=\left(P^{*} P\right)^{*}=P^{*} P=P^{*}$. So P is self adjoint and $P^{2}=P$.Therefore P is a projection on H.

End

