GAME THEORY-III
 (M.Sc. Sem-III)
 By : Shailendra Pandit
 Guest Assistant Prof. of Mathematics
 P.G. Dept. Patna University, Patna

Email : sksuman1575@gmail.com
Call : 9430974625

GRAPHIC SOLUTION OF $2 \times N$ AND $M \times 2$ GAMES

The procedure described in the last section will generally be applicable for any game with 2×2 payoff matrix unless it possesses a saddle point. Moreover, the procedure can be extended to any square payoff matrix of any order. But it will not work for the game whose payoff matrix happens to be a rectangular one, say $m \times n$. In such cases a very simple graphical method is available if either m or n is two. The graphic short-cut enables us to reduce the original $2 \times n$ or $m \times 2$ game to a much simpler 2×2 game. Consider the following $2 \times n$ game :

Player B

$$
\text { Player } A\left(\begin{array}{cccc}
B_{1} & B_{2} & \ldots & B_{\mathrm{n}} \\
A_{1} & a_{12} & \ldots & a_{1 \mathrm{n}} \\
A_{2} & a_{22} & \ldots & a_{2 \mathrm{n}}
\end{array}\right)
$$

It is assumed that the game does not have a saddle point. Let the optimum mixed strategy for A be given by $S_{A}=\left[\begin{array}{ll}A_{1} & A_{2} \\ p_{1} & p_{2}\end{array}\right]$ where $p_{1}+p_{2}=1$. The average (expected) payoff for A when he plays S_{A} against B 's pure moves $B_{1}, B_{2}, \ldots ., B_{n}$ is given by

$$
\begin{array}{cl}
B ' s \text { pure move } & A \text { 's expected payoff } E(p) \\
B_{1} & E_{1}\left(p_{1}\right)=a_{t 1} p_{1}+a_{21} p_{2}=a_{11} p_{1}+a_{21}\left(1-p_{1}\right) \\
B_{2} & E_{2}\left(p_{1}\right)=a_{12} p_{1}+a_{22} p_{2}=a_{12} p_{1}+a_{22}\left(1-p_{1}\right) \\
\vdots & \vdots \\
B_{n} & E_{n}\left(p_{1}\right)=a_{1 n} p_{1}+a_{2 n} p_{2}=a_{1 n} p_{1}+a_{2 n}\left(1-p_{1}\right)
\end{array}
$$

According to the maximum criterion for mixed strategy games, player A should select the values of p_{1} and p_{2} so as to maximize his minimum expected payoffs. This may be done by plotting the expected payoff lines:

$$
E_{j}\left(p_{1}\right)=\left(a_{i j}-a_{2 j}\right) p_{1}+a_{2 j}(j=1,2, \ldots n) .
$$

The highest point on the lower envelope of these lines will give maximum of the minimum (i.e., maximin) expected payoffs to player A as also the maximum value of p_{1}.

The two lines* passing through the maximin point identify the two critical moves of B which combined with two of A, yield the 2×2 matrix that can be used to determine the optimum strategies of the two players, for the original game, using the results of the previous section.

The ($m \times 2$) games are also treated in the same way where the upper envelope of the straight lines corresponding to B 's expected payoffs will give the maximum expected payoff to player B and the lowest point on this then gives the minimum expected payoff (minimax value) and the optimum value of q_{1}.

SAMPLE PROBLEMS

1. Solve the following 2×2 game graphically :

	Player B					
Player A	A_{1}					
A_{2}	B_{2}				B_{3}	B_{4}
:---:						
A_{2}	\(\left[\begin{array}{cccc}1 \& 0 \& -2 					

1 \& 0 \& 3 \& 2\end{array}\right]\)

Solution. Clearly, the problem does not possess a saddle point. Let the player A play the mixed strategy $S_{A}=\left[\begin{array}{ll}A_{1} & A_{2} \\ p_{1} & p_{2}\end{array}\right]$ where $p_{2}=1-p_{1}$, against B. Then A 's expected payoffs against B 's pure moves are given by

$$
\begin{array}{cc}
B ' s \text { pure move } & A \text { 's expected payoff } E\left(p_{1}\right) \\
B_{1} & E_{1}\left(p_{1}\right)=p_{1}+1 \\
B_{2} & E_{2}\left(p_{1}\right)=p_{1} \\
B_{3} & E_{3}\left(p_{1}\right)=-3 p_{1}+3 \\
B_{4} & E_{4}\left(p_{1}\right)=-4 p_{1}+2
\end{array}
$$

These expected payoff equations are then plotted as functions of p_{1} as shown in figure. Which shows the payoffs of each column represented as points on two vertical axis 1 and 2 , unit distance apart. Thus line B_{1} joins the first payoff element 2 in the first column represented by +2 on axis 2 and the second payoff element I in the first column represented by +1 on axis 1 . Similarly, lines $B_{2} B_{3}$ and B_{4} join the corresponding representation of payoff elements in the second, third and fourth columns. Since the player A wishes to maximize his minimum expected payoff we consider the highest point of intersection H on the lower envelope of the A 's expected payoff equations. This point H represents the maximum expected value of the game for A. The lines B_{2} and B_{4}, passing through H, define the two relevant moves B_{2} and B_{4} that alone B needs to play. The solution to the original $2+4$ game, therefore, boils down that of the simpler game with the 2×2 payoff matrix :

$$
\begin{gathered}
\\
A_{1} \\
A_{2}
\end{gathered} \begin{array}{cc}
B_{2} & B_{4} \\
{\left[\begin{array}{cc}
1 & -2 \\
0 & 2
\end{array}\right]}
\end{array}
$$

The maximin value

Now if $S_{A}=\left[\begin{array}{cc}A_{1} & A_{2} \\ p_{1} & p_{2}\end{array}\right]$ and $S_{B}=\left[\begin{array}{cc}B_{2} & B_{4} \\ q_{2} & q_{4}\end{array}\right]$
be the optimum strategies for A and B, then we have

$$
\begin{gathered}
p_{1}=\frac{2-0}{1+2-(-2)}=2 / 5, p_{2}=1-p_{1}=3 / 5 \\
\mathrm{~d}_{2}=\frac{2-(-2)}{1+2-(-2)}=4 / 5, q_{4}=1-q_{1}=1 / 5 .
\end{gathered}
$$

Hence, the solution to the game is
(i) the optimum strategy for A is $S_{A}=\left[\begin{array}{cc}A_{1} & A_{2} \\ 2 / 5 & 3 / 5\end{array}\right]$
(ii) the optimum strategy for B is : $S_{B}=\left[\begin{array}{cccc}B_{1} & B_{2} & B_{3} & B_{4} \\ 0 & 4 / 5 & 0 & 1 / 5\end{array}\right]$
and (iii) the expected value of the game is $v=\frac{2 \times 1-0 \times(-2)}{1+2-(0-2)}=\frac{2}{5}$.
2. Obtain the optimal strategies for both-persons and the value of the game for zero-sum two person game whose payoff matrix is as follows :

$$
\left[\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 6 \\
4 & 1 \\
2 & 2 \\
-5 & 0
\end{array}\right]
$$

Sol. Clearly, the given problem does not possess any saddle point. So, let the player B play the mixed strategy $S_{B}=\left[\begin{array}{ll}B_{1} & B_{2} \\ q_{1} & q_{2}\end{array}\right]$ with $q_{2}=1-q_{1}$ against player A. Then B 's expected payoffs against A 's pure moves are given by

$$
\begin{array}{cc}
A \text { 's pure move } & B \text { 's expected payoff } E \\
A_{1} & E_{1}\left(q_{1}\right)=4 q_{1}-3 \\
A_{2} & E_{2}\left(q_{1}\right)=-2 q_{1}+5 \\
A_{3} & E_{3}\left(q_{1}\right)=-7 q_{1}+6 \\
A_{4} & E_{4}\left(q_{1}\right)=3 q_{1}+1 \\
A_{5} & E_{5}\left(q_{1}\right)=2 \\
A_{6} & E_{6}\left(q_{1}\right)=-5 q_{1}
\end{array}
$$

The expected payoff equations are then plotted as functions of q_{1} as shown in figure.

The minimax value
Since, the player B wishes to minimize his maximum expected payoff, we consider the loose point of intersection H on the upper envelope of B 's expected payoff equations. This point B represents the minimax expected value of the game for player B. The lines A_{2} and A_{4} passing through H, define the two relevant moves A_{2} and A_{4} that alone the player A needs to play. The solution to the original 6×2 game, therefore,
reduces to that of the simpler game with 2×2 payoff matrix :
Player B
Player A $\left[\begin{array}{ll}3 & 5 \\ 4 & 1\end{array}\right]$
If we now, let

$$
S_{A}=\left[\begin{array}{ll}
A_{2} & A_{4} \\
p_{1} & p_{2}
\end{array}\right], p_{1}+p_{2}=1 ; S_{B}=\left[\begin{array}{cc}
B_{1} & B_{2} \\
q_{1} & q_{2}
\end{array}\right], q_{1}+q_{2}=1
$$

then using the usual method of solution for 2×2 games, the optimum strategies can easily be obtained as

$$
S_{A}=\left[\begin{array}{cccccc}
A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_{6} \\
0 & 3 / 5 & 0 & 2 / 5 & 0 & 0
\end{array}\right], S_{B}=\left[\begin{array}{cc}
B_{1} & B_{2} \\
4 / 5 & 1 / 5
\end{array}\right]
$$

and the value of the game as $v=17 / 5$.

