e-content (lecture-22)

by

DR ABHAY KUMAR (Guest Faculty)

P.G. Department of Mathematics

Patna University Patna

MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)

Topic: Theorem on projection.

Theorem: If *P* is a projection on a Hilbert space *H* with

range M and null space N, then $M \perp N \Leftrightarrow P$ is self-

adjoint and in this case $N = M^{\perp}$.

Proof: Suppose *P* is a projection on a Hilbert space *H* with range *M* and null space *N*. Then $H = M \bigoplus N$.

Suppose that $M \perp N$ To prove P is self-adjoint.

Let $z \in H$ Then z can be uniquely written as

z = x + y where $x \in M$ and $y \in N$.

Now we have (Pz, z) = (x, z)

$$=(x,x+y)$$

$$= (x, x) + (x, y)$$
$$= (x, x)$$

[since $x \in M$ and $y \in N$ and $M \perp N$ so (x, y) = 0] Also $(P^*z, z) = (z, Pz) = (z, x)$ $= (x \perp y, x)$

$$= (x + y, x)$$

= (x, x) + (x, y)
= (x, x)

Hence $\forall z \in H$

we have $(Pz, z) = (P^*z, z)$ $\Rightarrow P = P^* \Rightarrow P$ is self-adjoint.

Conversely Suppose that *P* is self-adjoint.

To prove $M \perp N$. Let $x \in M$ and $y \in N$ Then (x, y) = (Px, y) $= (x, P^*y)$ = (x, Py)[Since $y \in N \Rightarrow Py = 0$] = (x,0) = 0.

Hence $\forall x \in M \text{ and } \forall y \in N$, $(x, y) = 0 \Rightarrow M \perp N$. Second Part: To prove $N = M^{\perp}$.

Let $x \in N$ Then $M \perp N \Rightarrow x \perp M$

$$\Rightarrow x \in M^{\perp}$$
$$\Rightarrow N \subseteq M^{\perp}....(1)$$

Let *N* be proper subset of M^{\perp} . Then *N* is a proper closed linear subspace of the Hilbert space M^{\perp} .

So there exists a non zero vector z_0 in M^{\perp} such that

 $z_0 \perp N$.But $z_0 \in M^{\perp} \Rightarrow z_0 \perp M$

Since $z_0 \perp N$ and $z_0 \perp M$ and $H = M \bigoplus N$.

Hence $z_0 \perp H \Rightarrow z_0 = 0$ we get a contradiction.

So we must have $N = M^{\perp}$.

END.