e-content (lecture-22)
by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)
Topic: Theorem on projection .
Theorem: If P is a projection on a Hilbert space H with
range M and null space N,then $M \perp N \Leftrightarrow P$ is selfadjoint and in this case $N=M^{\perp}$.

Proof: Suppose P is a projection on a Hilbert space H with range M and null space N.Then $H=M \bigoplus N$.

Suppose that $M \perp N$ To prove P is self- adjoint.
Let $z \in H$ Then z can be uniquely written as

$$
z=x+y \text { where } x \in M \text { and } y \in N
$$

Now we have

$$
\begin{aligned}
(P z, z) & =(x, z) \\
& =(x, x+y)
\end{aligned}
$$

$$
\begin{aligned}
& =(x, x)+(x, y) \\
& =(x, x)
\end{aligned}
$$

[since $x \in M$ and $y \in N$ and $M \perp N$ so $(x, y)=0$]

$$
\text { Also } \begin{aligned}
\left(P^{*} z, z\right)=(z, P z) & =(z, x) \\
& =(x+y, x) \\
& =(x, x)+(x, y) \\
& =(x, x)
\end{aligned}
$$

Hence $\quad \forall z \in H$

$$
\begin{aligned}
& \text { we have }(P z, z)=\left(P^{*} z, z\right) \\
& \Rightarrow P=P^{*} \Rightarrow P \text { is self- adjoint. }
\end{aligned}
$$

Conversely Suppose that P is self- adjoint.
To prove $M \perp N$.
Let $x \in M$ and $y \in N$
Then $(x, y)=(P x, y)$

$$
\begin{aligned}
& =\left(x, P^{*} y\right) \\
& =(x, P y)
\end{aligned}
$$

[Since $y \in N \Rightarrow P y=0]$

$$
=(x, 0)=0 .
$$

Hence $\forall x \in M$ and $\forall y \in N,(x, y)=0 \Rightarrow M \perp N$.
Second Part: To prove $N=M^{\perp}$.
Let $x \in N$ Then $M \perp N \Rightarrow x \perp M$

$$
\begin{align*}
& \Rightarrow x \in M^{\perp} \\
& \Rightarrow N \subseteq M^{\perp} . \tag{1}
\end{align*}
$$

Let N be proper subset of M^{\perp}. Then N is a proper closed linear subspace of the Hilbert space M^{\perp}.

So there exists a non zero vector z_{0} in M^{\perp} such that

$$
z_{0} \perp N \text {.But } z_{0} \in M^{\perp} \Rightarrow z_{0} \perp M
$$

Since $z_{0} \perp N$ and $z_{0} \perp M$ and $H=M \oplus N$.
Hence $z_{0} \perp H \Rightarrow z_{0}=0$ we get a contradiction.
So we must have $N=M^{\perp}$.

END.

