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1 Equicontinuous Function

1.1 Equicontinuous Set of Function

Let a set of functions F={f : defined on a rea interval I } is said to be equicontinuous if for a given

ε > 0, there exist a δε > 0 independent of f and also t, t ∈ I such that∣∣∣f(t)− f(t)
∣∣∣ < ε whenever

∣∣∣t− t∣∣∣ < δε

Ascoli-Arzella Theorem: On a bounded real interval I, let

F = {f : f be defined on I}

be infinite, uniformly bounded equicontinuous set of function f . Then F contains a sequence {fn}
which is uniformly convergent on I.

Proof :- Let a sequence {rk}, k = 1, 2, 3, ... be a rational on I, enumerate in same. order.

Since F is uniformly bounded over I. Hence there exist a number M > 0 such that

f(x) ≤M ∀ x ∈ I, ∀ f ∈ F

the set of number {f(r1)} is bounded on I.

So there exists a sequence of distinct real valued function {fn1} such that the sequence {fn1(r1} is

convergent on I

Similarly, the set of numbers {fn1(r2} is also bounded and and convergent consequently the sequence of

numbers {fn2
(r2} is convergent on I. Continuing in this way we get a sequence of real valued function

{fnk
} n, k = 1, 2, 3, ... , which is convergent on each rational {rk} k = 1, 2, 3, ... i.e.,

{fnk
} is pointwise convergent on I

Now, {fn} is pointwise convergent on I. We need to prove that {fn} is uniformlly convergent on I.

For a given ε > 0 and for a rational rk in I, ∃ a positive integer Nε(rk) such that∣∣∣fn(rk)− fm(rk)
∣∣∣ < ε ∀ n,m ≥ Nε(rk)

∗Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

1



2

For this some ε > 0, ∃ a δε > 0 such that ∀ t, t ∈ I and ∀ f ∈ F, fn ∈ F∣∣∣f(t)− f(t)
∣∣∣ < ε whenever

∣∣∣t− t∣∣∣ < δε

Hence δε is independent of t, t ∈ I and f ⊂ F
Since fn ⊂ F ∀ n ∈ N. So we have∣∣∣fn(t)− fn(rk)

∣∣∣ < ε whenever
∣∣∣t− rk∣∣∣ < δε

Now, divided the whole interval I into finite number of subinterval I1, I2, I3, ..., In such that the length

of the largest subinterval is less than δε. If we select any rational t ∈ I, it will be in some subinterval

I1, I2, I3, ..., In. Let ←−rp ∈ I again it will be in subinterval Ik. Then∣∣∣fn(t)− fm(t)
∣∣∣ =

∣∣∣fn(t)− fn(rk) + fn(rk)− fm(rk) + fm(rk)− fm(t)
∣∣∣

≤
∣∣∣fn(t)− fn(rk

∣∣∣+
∣∣∣fn(rk)− fm(rk)

∣∣∣+
∣∣∣fm(rk)− fm(t)

∣∣∣
< ε+ ε+ ε = 3ε

(1)

so assume

Nε = max
{
Nε(r1), Nε(r2), Nε(r3), ..., Nε(rk)

}
then we have ∣∣∣fn(t)− fm(t)

∣∣∣ < ε ∀ n,m ≥ Nε (2)

=⇒ {fn} is uniformly convergent on I

1.2 Gronwall’s inequality

Statement: If u(t) and v(t) be non-negative and continuous on [a, b] and ”C” be a non-negative constant.

Again if

v(t) ≤ Ct
t∫
a

u(s)v(s)ds, t ∈ [a, b]

Then

v(t) ≤ C exp
( t∫
a

u(s)ds
)
, t ∈ [a, b]

and if c = 0

=⇒ v(t) = 0 ∀ t ∈ [a, b]

Proof :- Given C be non-negative =⇒ C ≥ 0.

Case: I If C > 0, Suppose

V (t) = C +

t∫
a

u(s)v(s)ds, t ∈ [a, b] (3)

Then,

v(t) ≤ Ct
t∫
a

u(s)v(s)ds
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Then,

v(t) ≤ V (t) ≥ C ≥ 0

=⇒ V (t) > 0 ∀ t ∈ [a, b]

Now,

V (t) = C +
t∫
a

u(s)v(s)ds, a ≤ t ≤ b

=⇒ V ′(t) = v(t)u(t) ≤ u(t)V (t)

=⇒ V ′(t)
V (t) ≤ u(t)

(4)

Integrating both side of equation (4), then∫ V ′(t)
V (t) dt ≤

∫
u(t)dt

=⇒
t∫
a

V ′(s)
V (s) ds ≤

t∫
a

u(s)ds

=⇒
[

log V (s)
]t
a
≤

t∫
a

u(s)ds

=⇒ log V (t)− log V (a) ≤
t∫
a

u(s)ds

(5)

Comparing equations (3) and (5) , we get

C = V (a)

=⇒ log V (t)
V (a) ≤

t∫
a

u(s)ds

=⇒ V (t)
C ≤ exp

( t∫
a

u(s)ds
) (6)

∴ V (t) ≤ C exp
( t∫
a

u(s)ds
)

(7)

∴ v(t) ≤ V (t) ≤ C exp
( t∫
a

u(s)ds
)

(8)

Case: II If C = 0 then equation (7)

=⇒ 0 ≤ V (t) ≤ 0, ∴ V (t) = 0 (9)

Hence from equations (8) and statement, we get

v(t) = 0. ∀ t ∈ [a, b]

...............All the best.........
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