Differential and integral Equation

Binod Kumar*
M.Sc. Mathematics Semester: II
PaperVII (MAT CC-07)
Patna University, Patna

1 Equicontinuous Function

1.1 Equicontinuous Set of Function

Let a set of functions $F=\{\mathrm{f}$: defined on a rea interval $I\}$ is said to be equicontinuous if for a given $\epsilon>0$, there exist a $\delta_{\epsilon}>0$ independent of f and also $t, \bar{t} \in I$ such that

$$
|f(t)-f(\bar{t})|<\epsilon \quad \text { whenever } \quad|t-\bar{t}|<\delta_{\epsilon}
$$

Ascoli-Arzella Theorem: On a bounded real interval I, let

$$
F=\{f: f \text { be defined on } I\}
$$

be infinite, uniformly bounded equicontinuous set of function f. Then F contains a sequence $\left\{f_{n}\right\}$ which is uniformly convergent on I.

Proof :- Let a sequence $\left\{r_{k}\right\}, k=1,2,3, \ldots$ be a rational on I, enumerate in same. order. Since F is uniformly bounded over I. Hence there exist a number $M>0$ such that

$$
f(x) \leq M \quad \forall x \in I, \quad \forall f \in F
$$

the set of number $\left\{f\left(r_{1}\right)\right\}$ is bounded on I.
So there exists a sequence of distinct real valued function $\left\{f_{n_{1}}\right\}$ such that the sequence $\left\{f_{n_{1}}\left(r_{1}\right\}\right.$ is convergent on I
Similarly, the set of numbers $\left\{f_{n_{1}}\left(r_{2}\right\}\right.$ is also bounded and and convergent consequently the sequence of numbers $\left\{f_{n_{2}}\left(r_{2}\right\}\right.$ is convergent on I. Continuing in this way we get a sequence of real valued function $\left\{f_{n_{k}}\right\} \quad n, k=1,2,3, \ldots$, which is convergent on each rational $\left\{r_{k}\right\} k=1,2,3, \ldots$ i.e.,

$$
\left\{f_{n_{k}}\right\} \text { is pointwise convergent on } I
$$

Now, $\left\{f_{n}\right\}$ is pointwise convergent on I. We need to prove that $\left\{f_{n}\right\}$ is uniformlly convergent on I. For a given $\epsilon>0$ and for a rational $\overline{r_{k}}$ in I, \exists a positive integer $N_{\epsilon}\left(\overline{r_{k}}\right)$ such that

$$
\left|f_{n}\left(\overline{r_{k}}\right)-f_{m}\left(\overline{r_{k}}\right)\right|<\epsilon \quad \forall n, m \geq N_{\epsilon}\left(\overline{r_{k}}\right)
$$

*Corresponding author, e-mail:binodkumararyan@gmail.com, Telephone: +91-9304524851

For this some $\epsilon>0, \quad \exists$ a $\delta_{\epsilon}>0$ such that $\forall t, \bar{t} \in I$ and $\forall f \in F, \quad f_{n} \in F$

$$
|f(t)-f(\bar{t})|<\epsilon \quad \text { whenever } \quad|t-\bar{t}|<\delta_{\epsilon}
$$

Hence δ_{ϵ} is independent of $t, \bar{t} \in I$ and $f \subset F$
Since $f_{n} \subset F \quad \forall n \in \mathbb{N}$. So we have

$$
\left|f_{n}(t)-f_{n}\left(\overline{r_{k}}\right)\right|<\epsilon \text { whenever }\left|t-\overline{r_{k}}\right|<\delta_{\epsilon}
$$

Now, divided the whole interval I into finite number of subinterval $I_{1}, I_{2}, I_{3}, \ldots, I_{n}$ such that the length of the largest subinterval is less than δ_{ϵ}. If we select any rational $t \in I$, it will be in some subinterval $I_{1}, I_{2}, I_{3}, \ldots, I_{n}$. Let $\overleftarrow{r_{p}} \in I$ again it will be in subinterval I_{k}. Then

$$
\begin{align*}
\left|f_{n}(t)-f_{m}(t)\right| & =\left|f_{n}(t)-f_{n}\left(\overline{r_{k}}\right)+f_{n}\left(\overline{r_{k}}\right)-f_{m}\left(\overline{r_{k}}\right)+f_{m}\left(\overline{r_{k}}\right)-f_{m}(t)\right| \\
& \leq \mid f_{n}(t)-f_{n}\left(\overline { r _ { k } } \left|+\left|f_{n}\left(\overline{r_{k}}\right)-f_{m}\left(\overline{r_{k}}\right)\right|+\left|f_{m}\left(\overline{r_{k}}\right)-f_{m}(t)\right|\right.\right. \tag{1}\\
& <\epsilon+\epsilon+\epsilon=3 \epsilon
\end{align*}
$$

so assume

$$
N_{\epsilon}=\max \left\{N_{\epsilon}\left(\overline{r_{1}}\right), N_{\epsilon}\left(\overline{r_{2}}\right), N_{\epsilon}\left(\overline{r_{3}}\right), \ldots, N_{\epsilon}\left(\overline{r_{k}}\right)\right\}
$$

then we have

$$
\begin{equation*}
\left|f_{n}(t)-f_{m}(t)\right|<\epsilon \quad \forall n, m \geq N_{\epsilon} \tag{2}
\end{equation*}
$$

$\Longrightarrow\left\{f_{n}\right\}$ is uniformly convergent on I

1.2 Gronwall's inequality

Statement: If $u(t)$ and $v(t)$ be non-negative and continuous on $[a, b]$ and " C " be a non-negative constant. Again if

$$
v(t) \leq C t \int_{a}^{t} u(s) v(s) d s, \quad t \in[a, b]
$$

Then

$$
v(t) \leq C \exp \left(\int_{a}^{t} u(s) d s\right), \quad t \in[a, b]
$$

and if $c=0$

$$
\Longrightarrow \quad v(t)=0 \quad \forall t \in[a, b]
$$

Proof :- Given C be non-negative $\Longrightarrow C \geq 0$.

Case: I If $C>0$, Suppose

$$
\begin{equation*}
V(t)=C+\int_{a}^{t} u(s) v(s) d s, \quad t \in[a, b] \tag{3}
\end{equation*}
$$

Then,

$$
v(t) \leq C t \int_{a}^{t} u(s) v(s) d s
$$

Then,

$$
\begin{gathered}
v(t) \leq V(t) \geq C \geq 0 \\
\Longrightarrow \\
\hline V(t)>0 \quad \forall t \in[a, b]
\end{gathered}
$$

Now,

$$
\begin{align*}
& V(t)=C+\int_{a}^{t} u(s) v(s) d s, \quad a \leq t \leq b \\
& \Longrightarrow \quad V^{\prime}(t)=v(t) u(t) \leq u(t) V(t) \tag{4}\\
& \Longrightarrow \quad \frac{V^{\prime}(t)}{V(t)} \leq u(t)
\end{align*}
$$

Integrating both side of equation (4), then

$$
\begin{align*}
& \int \frac{V^{\prime}(t)}{V(t)} d t \leq \int u(t) d t \\
& \Longrightarrow \quad \int_{a}^{t} \frac{V^{\prime}(s)}{V(s)} d s \leq \int_{a}^{t} u(s) d s \tag{5}\\
& \Longrightarrow \quad[\log V(s)]_{a}^{t} \leq \int_{a}^{t} u(s) d s \\
& \Longrightarrow \quad \log V(t)-\log V(a) \leq \int_{a}^{t} u(s) d s
\end{align*}
$$

Comparing equations (3) and (5), we get

$$
\begin{gather*}
C=V(a) \\
\Longrightarrow \quad \log \frac{V(t)}{V(a)} \leq \int_{a}^{t} u(s) d s \\
\Longrightarrow \quad \frac{V(t)}{C} \leq \exp \left(\int_{a}^{t} u(s) d s\right) \tag{6}\\
\therefore \quad V(t) \leq C \exp \left(\int_{a}^{t} u(s) d s\right) \tag{7}\\
\therefore \quad v(t) \leq V(t) \leq C \exp \left(\int_{a}^{t} u(s) d s\right) \tag{8}
\end{gather*}
$$

Case: II If $C=0$ then equation (7)

$$
\begin{equation*}
\Longrightarrow \quad 0 \leq V(t) \leq 0, \quad \therefore \quad V(t)=0 \tag{9}
\end{equation*}
$$

Hence from equations (8) and statement, we get

$$
v(t)=0 . \quad \forall \quad t \in[a, b]
$$

\qquad

