Differential and integral Equation

Binod Kumar*

M.Sc. Mathematics Semester: II PaperVII (MAT CC-07) Patna University ,Patna

1 Equicontinuous Function

1.1 Equicontinuous Set of Function

Let a set of functions $F = \{f : \text{ defined on a rea interval } I \}$ is said to be equicontinuous if for a given $\epsilon > 0$, there exist a $\delta_{\epsilon} > 0$ independent of f and also $t, \bar{t} \in I$ such that

$$\left|f(t) - f(\bar{t})\right| < \epsilon$$
 whenever $\left|t - \bar{t}\right| < \delta_{\epsilon}$

Ascoli-Arzella Theorem: On a bounded real interval I, let

 $F = \{f : f \text{ be defined on } I\}$

be infinite, uniformly bounded equicontinuous set of function f. Then F contains a sequence $\{f_n\}$ which is uniformly convergent on I.

Proof :- Let a sequence $\{r_k\}$, k = 1, 2, 3, ... be a rational on I, enumerate in same. order. Since F is uniformly bounded over I. Hence there exist a number M > 0 such that

$$f(x) \le M \quad \forall \ x \in I, \ \forall \ f \in F$$

the set of number $\{f(r_1)\}$ is bounded on I.

So there exists a sequence of distinct real valued function $\{f_{n_1}\}$ such that the sequence $\{f_{n_1}(r_1)\}$ is convergent on I

Similarly, the set of numbers $\{f_{n_1}(r_2\}$ is also bounded and and convergent consequently the sequence of numbers $\{f_{n_2}(r_2\}$ is convergent on I. Continuing in this way we get a sequence of real valued function $\{f_{n_k}\}\ n, k = 1, 2, 3, \dots$, which is convergent on each rational $\{r_k\}\ k = 1, 2, 3, \dots$ i.e.,

 $\{f_{n_k}\}$ is pointwise convergent on I

Now, $\{f_n\}$ is pointwise convergent on I. We need to prove that $\{f_n\}$ is uniformly convergent on I. For a given $\epsilon > 0$ and for a rational $\overline{r_k}$ in I, \exists a positive integer $N_{\epsilon}(\overline{r_k})$ such that

$$\left|f_n(\overline{r_k}) - f_m(\overline{r_k})\right| < \epsilon \quad \forall \quad n, m \ge N_{\epsilon}(\overline{r_k})$$

 $[\]label{eq:corresponding} \ensuremath{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ}}\xspace{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ}}\xspace{^{\circ}}\ensuremath{^{\circ$

 $\text{For this some } \epsilon > 0, \quad \exists \quad \mathbf{a} \ \delta_{\epsilon} > 0 \text{ such that } \quad \forall \ t, \overline{t} \in I \text{ and } \forall \ f \in F, \ f_n \in F$

$$\left|f(t) - f(\bar{t})\right| < \epsilon$$
 whenever $\left|t - \bar{t}\right| < \delta_{\epsilon}$

Hence δ_{ϵ} is independent of $t, \ \overline{t} \in I$ and $f \subset F$ Since $f_n \subset F \quad \forall \ n \in \mathbb{N}$. So we have

$$\left|f_n(t) - f_n(\overline{r_k})\right| < \epsilon$$
 whenever $\left|t - \overline{r_k}\right| < \delta_\epsilon$

Now, divided the whole interval I into finite number of subinterval $I_1, I_2, I_3, ..., I_n$ such that the length of the largest subinterval is less than δ_{ϵ} . If we select any rational $t \in I$, it will be in some subinterval $I_1, I_2, I_3, ..., I_n$. Let $\overleftarrow{r_p} \in I$ again it will be in subinterval I_k . Then

$$\begin{aligned} \left| f_n(t) - f_m(t) \right| &= \left| f_n(t) - f_n(\overline{r_k}) + f_n(\overline{r_k}) - f_m(\overline{r_k}) + f_m(\overline{r_k}) - f_m(t) \right| \\ &\leq \left| f_n(t) - f_n(\overline{r_k}) + \left| f_n(\overline{r_k}) - f_m(\overline{r_k}) \right| + \left| f_m(\overline{r_k}) - f_m(t) \right| \\ &< \epsilon + \epsilon + \epsilon = 3\epsilon \end{aligned}$$

$$\tag{1}$$

so assume

$$N_{\epsilon} = max \Big\{ N_{\epsilon}(\overline{r_1}), N_{\epsilon}(\overline{r_2}), N_{\epsilon}(\overline{r_3}), ..., N_{\epsilon}(\overline{r_k}) \Big\}$$

then we have

$$\left|f_n(t) - f_m(t)\right| < \epsilon \quad \forall \quad n, m \ge N_\epsilon$$
 (2)

 \implies $\{f_n\}$ is uniformly convergent on I

1.2 Gronwall's inequality

Statement: If u(t) and v(t) be non-negative and continuous on [a, b] and "C" be a non-negative constant. Again if

$$v(t) \le Ct \int_{a}^{t} u(s)v(s)ds, \ t \in [a,b]$$

Then

$$v(t) \le C \exp\left(\int_{a}^{t} u(s)ds\right), \ t \in [a, b]$$

and if c = 0

$$\implies \quad v(t)=0 \quad \forall \ t\in [a,b]$$

Proof :- Given C be non-negative $\implies C \ge 0$.

Case: I If
$$C > 0$$
, Suppose

$$V(t) = C + \int_{a}^{t} u(s)v(s)ds, \quad t \in [a, b]$$

$$\tag{3}$$

Then,

$$v(t) \le Ct \int\limits_{a}^{t} u(s)v(s)ds$$

Then,

$$v(t) \le V(t) \ge C \ge 0$$
$$\implies V(t) > 0 \quad \forall \ t \in [a, b]$$

Now,

$$V(t) = C + \int_{a}^{t} u(s)v(s)ds, \qquad a \le t \le b$$

$$\implies V'(t) = v(t)u(t) \le u(t)V(t)$$

$$\implies \frac{V'(t)}{V(t)} \le u(t)$$
(4)

Integrating both side of equation (4), then

$$\int \frac{V'(t)}{V(t)} dt \leq \int u(t) dt$$

$$\implies \int_{a}^{t} \frac{V'(s)}{V(s)} ds \leq \int_{a}^{t} u(s) ds$$

$$\implies \left[\log V(s) \right]_{a}^{t} \leq \int_{a}^{t} u(s) ds$$

$$\implies \log V(t) - \log V(a) \leq \int_{a}^{t} u(s) ds$$
(5)

Comparing equations (3) and (5), we get

$$C = V(a)$$

$$\implies \log \frac{V(t)}{V(a)} \le \int_{a}^{t} u(s) ds$$

$$\implies \frac{V(t)}{C} \le \exp\left(\int_{a}^{t} u(s) ds\right)$$
(6)

$$\therefore \quad V(t) \le C \exp\left(\int_{a}^{t} u(s)ds\right)$$
(7)

$$\therefore \quad v(t) \le V(t) \le C \exp\left(\int_{a}^{t} u(s)ds\right)$$
(8)

Case: II If C = 0 then equation (7)

$$\implies 0 \le V(t) \le 0, \qquad \therefore \quad V(t) = 0 \tag{9}$$

Hence from equations (8) and statement, we get

$$v(t) = 0. \quad \forall \quad t \in [a, b]$$

.....All the best.....