e-content (lecture-21)
by
DR ABHAY KUMAR (Guest Faculty)
P.G. Department of Mathematics

Patna University Patna
MATH SEM-3 CC-11 UNIT-5 (Functional Analysis)
Topic: Theorem and problems on Normal and Unitary operators .

Theorem: If T is an operator on a Hilbert space H,
then T is unitary \Leftrightarrow it is an isometry isomorphism of H onto itself.

Proof : Since T is an unitary operator on a Hilbert space H so T is invertible and hence it is onto .

Also $T^{*} T=I$ so we have $\|T x\|=\|x\| \quad \forall x \in H$.
Hence T is an isometry isomorphism of H onto itself.
Conversely suppose that T is an isometry isomorphism of H onto itself.

To prove T is unitary.

Since T is an isometry isomorphism of H onto itself hence T is one-one and onto so T^{-1} exists

Also T is an isometry isomorphism

$$
\begin{aligned}
& \Rightarrow\|T x\|=\|x\| \quad \forall x \in H \\
& \Rightarrow T^{*} T=I \\
& \Rightarrow T^{*}\left(T T^{-1}\right)=T^{-1} \\
& \Rightarrow T^{*} I=T^{-1} \\
& \Rightarrow T^{*}=T^{-1}
\end{aligned}
$$

Now T is invertible

$$
\begin{aligned}
& \text { so } T^{-1} T=I=T T^{-1} \\
& \Rightarrow T^{*} T=I=T T^{*} \quad\left[\text { since } T^{*}=T^{-1}\right]
\end{aligned}
$$

Hence T is unitary.
Problem: If T is a normal operator on a Hilbert space H and α is any scalar then $T-\alpha I$ is also normal .

Solution: Since T is a normal
therefore $T^{*} T=T T^{*}$.
Now $(T-\alpha I)(T-\alpha I)^{*}=(T-\alpha I)\left(T^{*}-\bar{\alpha} I^{*}\right)$

$$
\begin{align*}
& =(T-\alpha I)\left(T^{*}-\bar{\alpha} I\right) \\
(T-\alpha I)(T-\alpha I)^{*} & =T T^{*}-\bar{\alpha} T-\alpha T^{*}+|\alpha|^{2} I \tag{1}
\end{align*}
$$

Also $(T-\alpha I)^{*}(T-\alpha I)=\left(T^{*}-\bar{\alpha} I^{*}\right)(T-\alpha I)$

$$
=T^{*} T-\bar{\alpha} T-\alpha T^{*}+|\alpha|^{2} I
$$

Since $T^{*} T=T T^{*}$ so from (1) and (2) we get

$$
(T-\alpha I)(T-\alpha I)^{*}=(T-\alpha I)^{*}(T-\alpha I)
$$

Problem: If T is an arbitrary operator on a Hilbert space H and α and β are any scalars such that

$$
|\alpha|=|\beta| \text { then } \alpha T+\beta T^{*} \text { is also normal. }
$$

Solution: We have

$$
\begin{align*}
\left(\alpha T+\beta T^{*}\right)^{*} & =(\alpha T)^{*}+\left(\beta T^{*}\right)^{*} \\
& =\bar{\alpha} T^{*}+\bar{\beta} T^{* *} \\
& =\bar{\alpha} T^{*}+\bar{\beta} T \ldots \tag{1}
\end{align*}
$$

Now $\left(\alpha T+\beta T^{*}\right)\left(\alpha T+\beta T^{*}\right)^{*}$

$$
\begin{array}{r}
=\left(\alpha T+\beta T^{*}\right)\left(\bar{\alpha} T^{*}+\bar{\beta} T\right) \quad[\text { from (1)] } \\
=|\alpha|^{2} T T^{*}+\alpha \bar{\beta} T^{2}+\beta \bar{\alpha} T^{*} T^{*}+|\beta|^{2} T^{*} T \ldots \text {...(2) }
\end{array}
$$

Again $\left(\alpha T+\beta T^{*}\right)^{*}\left(\alpha T+\beta T^{*}\right)$

$$
\begin{gather*}
=\left(\bar{\alpha} T^{*}+\bar{\beta} T\right)\left(\alpha T+\beta T^{*}\right) \\
=|\alpha|^{2} T^{*} T+\alpha \bar{\beta} T^{2}+\beta \bar{\alpha} T^{*} T^{*}+|\beta|^{2} T T^{*} \tag{3}
\end{gather*}
$$

Since $|\alpha|=|\beta|$ hence from (2) and (3) we get

$$
\left(\alpha T+\beta T^{*}\right)\left(\alpha T+\beta T^{*}\right)^{*}=\left(\alpha T+\beta T^{*}\right)^{*}\left(\alpha T+\beta T^{*}\right)
$$

Therefore $\alpha T+\beta T^{*}$ is also normal .

