E - content - Pro(Dr) LNRAI

HOD, PG Department of Mathematics, Patna University, Patna.

Topic- Differential Geometry

Define Betrand Curves and show that the distance between

 corresponding points of two curves is constantSolution: Two curves \boldsymbol{C}_{0} and $\boldsymbol{C}_{\mathbf{1}}$ having their principal normals in common are called Betrand curves or conjugate curve

The distance between corespondingpoints of two curves is constant.

Proof

We take their principle normals in the same sense, so that
$\hat{n}_{1}=\hat{n}$

Let \vec{r} be the position vector of a point on a curve C , the position vector \vec{r}_{1} of a corresponding point P_{1} on the associate Betrand curve C_{1} and C is given by
$\vec{r}_{1}=\vec{r}+\lambda \hat{n}$
where λ is a quantity which is function of ' S ' and denotes the distance between two corresponding points of two curves

Differentiating (2) w.r.t 's' , we get
$\frac{d \vec{r}_{1}}{d s_{1}} \cdot \frac{d s_{1}}{d s}=\hat{t}+\lambda^{\prime} \hat{n}+\lambda(\zeta \hat{b}-k \hat{t})$
$\hat{t}_{1} \frac{d s_{1}}{d}=(1-\lambda k) \hat{t}+\lambda^{\prime} \hat{n}+\lambda \zeta \hat{b}$.
Taking dot product with (1) and (3) , we get
$\lambda^{\prime}=0$
$\Rightarrow \lambda=$ constant

