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1 Source and sinks in two-dimension

In two dimensions a source of strength m is such that the flow across any small curve
surrounding is 2πm. Sink is regarded as a source of strength −m.

Consider a Circle of radius r with source at its centre. Then radial velocity qr is given
by

qr = −1

r

∂ψ

∂θ
(1)

or

qr = −∂φ
∂r

as
∂φ

∂θ
=

1

r

∂ψ

∂θ
(2)

Then the flow across the circle is 2πrqr. Hence we have

2πrqr = 2πm or rqr = m (3)

or

r

(
−1

r

∂ψ

∂θ

)
= m, by(1).

Integrating and omitting constant of integration, we get

ψ = −mθ (4)

Using (2) and (3), we Obtain as before,

φ = −m log r (5)

Equation (4) shows that the streamlines ate θ= constant, i.e., straight lines radiating from
the source. Again (5) shows that the curves of equi-velocity potential are r =constant,
i.e., concentric circle with centre at the source.
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2 Complex potential due to a source

Let there be a source of strength m at origin then

w = φ+ ιψ = −m log r − ιmθ = −m(log r + ι log eιθ) = −m log
(
reιθ
)

= −m log z

If, however, the source is at z′, then the complex potential is given by w = −m log(z − z′).
The relation between w and z for source of strengths m1,m2, . . . situated at the points
z = z1, z2, z3 . . . is given by

w = −m1 log(z − z1)−m2 log(z − z2)−m3(z − z3)− . . .
leading to φ = −m1 log r1 −m2 log r2 −m3 log r3 − . . .

and ψ = −m1θ1 −m2θ2 −m3θ3 . . .

where rn = |z − zn| and θn = arg(z − zn), n = 1, 2, 3, . . .

3 The Theorem of Blasius.

In a steady two-dimensional irrational motion of and in-compressible fluid under no ex-
ternal forced given by the complex potential w = f(z), if the pressure thrusts on the fixed
cylinder of any shape are represented by a force (X, Y ) and a couple of moment M about
the origin of co-ordinates,then

X − ιY =
1

2
ιρ

∫
c

(
dw

dz

)2

dz, M=real part of

{
−1

2
ιρ

∫
c

z

(
dw

dz

)2

dz

}
Where ρ is the fluid density and integrals are taken round the contour C of the cylinder.

Proof. In the figure of the cylinder in plane XOY . Let P (x, y) and Q(x+ δx, y + δy) be
two neighbouring points on C such that arc PQ = δs. If θ be the angle which the tangent
PT at P on the contour C makes with x− axis, then

cos θ = dx/ds, sin θ = dy/ds, (6)

and the normal at P makes an angle (θ + π/2) with the x -axis. Now, if p denotes the
pressure at p, the force on unit length of the section δs is pδs to C. Then using (6), we
have

X =

∫
c

p cos(θ + π/2)ds = −
∫
c

p sin θds = −
∫
c

pdy, using (6) (7)

Y =

∫
c

p sin(θ + π/2)ds =

∫
c

p cos θds =

∫
c

pdx, using (6) (8)

M =

∫
c

[xṗ sin(θ + π/2)ds− y ˙cos(θ + π/2)ds] =

∫
c

p(x cos θds+ y sin θds)

or

M =

∫
c

p(xdx+ ydy), using (6) (9)
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Now Bernoulli’s equation in this context is

1

2
q2 +

p

ρ
= B so that p = ρB − 1

2
ρq2 (10)

where q is the fluid velocity, ρ density. Since ρ is constant for an imcompressible fluid,
take ρB = A (a constant). Again q2 = u2+v2 where u and v ate the velocity components.
Then(10) reduces to

p = A = (ρ/2)× (u2 + v2) (11)

Also,
dw/dz = −u+ ιv or − dw/dz = u− ιv (12)

using (11),(8),(7) and (9) reduced to

X = −
∫
c

[
A− 1

2
ρ(u2 + v2)

]
dy =

1

2
ρ

∫
c

(u2 + v2)dy (13)

Y =

∫
c

[
A− 1

2
ρ(u2 + v2)

]
dx = −1

2
ρ

∫
c

(u2 + v2)dx, (14)

and M =

∫
c

[
A− 1

2
ρ(u2 + v2)

]
(xdx+ ydy) = −1

2
ρ

∫
c

(u2 + v2)(xdx+ ydy) (15)

while simplifying (13),(14),and (15), we have to use the following results∫
c

dy =

∫
c

dy =

∫
c

xdx =

∫
c

xdy = 0

Which hold good because C is closed contour.
Now the contour of the cylinder is a streamline. Hence we have dx/u = dy/v. Now,

dx

u
=
dy

v
=
dx+ ιdy

u+ iv
=
dx− ιdy
u− ιv

or
dx− ιy
dx+ ιdy

=
u− ιv
u+ ιv

=
(u− ιv)2

u2 + v2

(u− ιv)2(dx+ ιdy) = (u2 + v2)

(
dx+

1

ι
dy

)
(16)

from (13) and (14) we have

X − ιY =
1

2
ρ

∫
c

(u2 + v2)(dy + ιdx) =
1

2
ρι

∫
c

(u2 + V 2)

(
dx+

1

ι
dy

)
=

1

2

∫
c

(u2 + v2)(dx− ιdy) =
1

2
ρι

∫
c

(u− ιv)2(dx+ ιy), by (16)

=
1

2
ρι

∫
c

(
dw

dz

)2

dz, using(12) and the fact z = x+ ιy ⇒ dz = dx+ ιdy,
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M = Real part of − 1

2
ρ

∫
c

(x+ ιy)(dx− ιdy)(u2 + v2)

= Real part of− 1

2
ρ

∫
c

(x+ ιy)(u− ιv)2(dx+ ιdy), using(16)

= Real part of

{
−1

2
ρ

∫
c

z

(
dw

dz

)2

dz

}

Remark 1. The above integrals are to be taken over the contour of the cylinder. If
however, we hake a large contour surrounding the cylinder such that between this contour
and the cylinder there is no singularity of the integrand, then we can take the integrals
round such large contours. The singularities of the integrand occur at sources, sinks,
sublets etc.

Remark 2. In what follows, we shall often use the following important definitions and
results of functions of complex variables.

A point at which a function f(z) ceases to be analytic is known as a singular point
or singularity of the function. If in the neighbourhood of the point z = a, f(z) can be
expanded in positive and negative power of (z − a), say

f(z) = · · ·+ A2(z − a)2 + A1(z − a) + A0 +
B1

z − a
+

B2

(z − a)2
+ . . .

then the point z = a is a singular point of f(z). If only a finite number of terms contain
negative powers of z − a, the point z = a is called a pole. In this case the coefficient of
1/(z − a) is called the residue fo the function at z = a.

3.1 Cauchy’s Residue theorem

If f(z) is analytic, except at a finite number of poles within a closed contour C and
continuous on the boundary C, then∫
c
f(z)dz = 2πι× [sum of the residues of f(z) at its poles within C]

All the best...
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